
The enumerate package∗

David Carlisle

2023/07/04

This file is maintained by the LATEX Project team.
Bug reports can be opened (category tools) at
https://latex-project.org/bugs.html.

Abstract

This package gives the enumerate environment an optional argument
which determines the style in which the counter is printed.

An occurrence of one of the tokens A a I i 1 produces the value
of the counter printed with (respectively) \Alph \alph \Roman \roman or
\arabic.

These letters may be surrounded by any strings involving any other TEX
expressions, however the tokens A a I i 1 must be inside a { } group if
they are not to be taken as special.

1 Examples

EX i. one one one one one one one
one one one one one

EX ii. two

example a) one of two one
of two one of
two

example b) two of two

A-1 one

A-2 two

\begin{enumerate}[EX i.]

\item one one one one one one one

one one one one\label{LA}

\item two

\begin{enumerate}[{example} a)]

\item one of two one of two

one of two\label{LB}

\item two of two

\end{enumerate}

\end{enumerate}

\begin{enumerate}[{A}-1]

\item one\label{LC}

\item two

\end{enumerate}

\label and \ref may be used as with the standard enumerate environment.
\ref only produces the counter value, not the whole label. \ref prints the value

∗This file has version number v3.00, last revised 2023/07/04.

1

https://latex-project.org/bugs.html


in the same style as \item, as determined by the presence of one of the tokens
A a I i 1 in the optional argument. In the above example \ref{LA}, \ref{LB}
and \ref{LC} produce ‘i’, ‘iia’ and ‘1’ respectively.

2 Macros

1 ⟨∗package⟩

\@enlab Internal token register used to build up the label command from the optional
argument.

2 \newtoks\@enLab

\@enQmark This just expands to a ‘?’. \ref will produce this, if no counter is printed.

3 \def\@enQmark{?}

The next four macros build up the command that will print the item label.
They each gobble one token or group from the optional argument, and add corre-
sponding tokens to the register \@enLab. They each end with a call to \@enloop,
which starts the processing of the next token.

\@enLabel Add the counter to the label. #2 will be one of the ‘special’ tokens A a I i 1,
and is thrown away. #1 will be a command like \Roman.

4 \def\@enLabel#1#2{%

5 \edef\@enThe{\noexpand#1{\@enumctr}}%

6 \@enLab\expandafter{\the\@enLab\csname the\@enumctr\endcsname}%

7 \@enloop}

\@enSpace

\@enSp@ce

Add a space to the label. The tricky bit is to gobble the space token, as you can
not do this with a macro argument.

8 \def\@enSpace{\afterassignment\@enSp@ce\let\@tempa= }

9 \def\@enSp@ce{\@enLab\expandafter{\the\@enLab\space}\@enloop}

\@enGroup Add a { } group to the label.

10 \def\@enGroup#1{\@enLab\expandafter{\the\@enLab{#1}}\@enloop}

\@enOther Add anything else to the label

11 \def\@enOther#1{\@enLab\expandafter{\the\@enLab#1}\@enloop}

\@enloop

\@enloop@

The body of the main loop. Eating tokens this way instead of using \@tfor lets
you see spaces and all braces. \@tfor would treat a and {a} as special, but not
{{a}}.

12 \def\@enloop{\futurelet\@entemp\@enloop@}

13 \def\@enloop@{%

14 \ifx A\@entemp \def\@tempa{\@enLabel\Alph }\else

15 \ifx a\@entemp \def\@tempa{\@enLabel\alph }\else

16 \ifx i\@entemp \def\@tempa{\@enLabel\roman }\else

17 \ifx I\@entemp \def\@tempa{\@enLabel\Roman }\else

18 \ifx 1\@entemp \def\@tempa{\@enLabel\arabic}\else

19 \ifx \@sptoken\@entemp \let\@tempa\@enSpace \else

20 \ifx \bgroup\@entemp \let\@tempa\@enGroup \else

21 \ifx \@enum@\@entemp \let\@tempa\@gobble \else

22 \let\@tempa\@enOther

2



Hook for possible extensions

23 \@enhook

24 \fi\fi\fi\fi\fi\fi\fi\fi

Process the current token, then look at the next.

25 \@tempa}

\@enhook Hook for possible extensions. Some packages may want to extend the number of
special characters that are associated with counter representations. This feature
was requested to enable Russian alphabetic counting, but here I give an example
of a footnote symbol counter, triggered by *.

To enable a new counter type based on a letter, you just need to add a new
\ifx clause by analogy with the code above. So for example to make * trigger
footnote symbol counting, a package should do the following.

Initialise the hook, in case the package is loaded before enumerate.

\providecommand\@enhook{}

Add to the hook a new \ifx clause that associates * with the \fnsymbol

counter command.

\g@addto@macro\@enhook{%

\ifx *\@entemp

\def\@tempa{\@enLabel\fnsymbol}%

\fi}

This code sequence should work whether it is loaded before or after this enumerate
package. Any number of new counter types may be added in this way.

At this point we just need initialise the hook, taking care not to overwrite any
definitions another package may already have added.

26 \providecommand\@enhook{}

\enumerate The new enumerate environment. This is the first half of the original enumer-
ate environment. If there is an optional argument, call \@@enum@ to define the
label commands, otherwise call \@enum@ which is the second half of the original
definition.

27 \def\enumerate{%

28 \ifnum \@enumdepth >3 \@toodeep\else

29 \advance\@enumdepth \@ne

30 \edef\@enumctr{enum\romannumeral\the\@enumdepth}\fi

31 \@ifnextchar[{\@@enum@}{\@enum@}}

\@@enum@ Handle the optional argument.

32 \def\@@enum@[#1]{%

Initialise the loop which will break apart the optional argument. The command to
print the label is built up in \@enlab. \@enThe will be used to define \theenumn.

33 \@enLab{}\let\@enThe\@enQmark

The \@enum@ below is never expanded, it is used to detect the end of the token
list.

34 \@enloop#1\@enum@

3



Issue a warning if we did not find one of the ‘special’ tokens.

35 \ifx\@enThe\@enQmark\@warning{The counter will not be printed.%

36 ^^J\space\@spaces\@spaces\@spaces The label is: \the\@enLab}\fi

Define \labelenumn and \theenumn.

37 \expandafter\edef\csname label\@enumctr\endcsname{\the\@enLab}%

38 \expandafter\let\csname the\@enumctr\endcsname\@enThe

Set the counter to 7 so that we get the width of ‘vii’ if roman numbering is in
force then set \leftmarginn. to the width of the label plus \labelsep.

39 \csname c@\@enumctr\endcsname7

40 \expandafter\settowidth

41 \csname leftmargin\romannumeral\@enumdepth\endcsname

42 {\the\@enLab\hspace{\labelsep}}%

Finally call \@enum@ which is the second half of the original definition.

43 \@enum@}

\@enum@ All the list parameters have now been defined, so call \list. This is taken straight
from the original definition of \enumerate.

44 \def\@enum@{\list{\csname label\@enumctr\endcsname}%

45 {\usecounter{\@enumctr}\def\makelabel##1{\hss\llap{##1}}}}

46 ⟨/package⟩

4


	1 Examples
	2 Macros

