
lutabulartools
some useful LuaLaTeX-based tabular tools

Kale Ewasiuk (kalekje@gmail.com)

2025–01–06

lutabulartools is a package that contains a few useful LuaLATEX-based macros to help
with tables. A global lua variable lutabt is created. This package redefines the tabular
and tabular* environments as well as \@arraycr to add functionarlity. The following
packages are loaded by this one, so if you have specific settings for these packages,
load the lutabulartools package after: booktabs, multirow, makecell, xparse,
array, xcolor, colortbl, luacode, penlightplus.

1 \settabular

A key-val interface in the \settabular{} command is used to set some tabular settings.
nopad automatically adds @{} on each end of the column spec.
tbrule automatically adds \toprule as the first thing in the tabular(*|x) environ-
ment, and \bottomrule as the last. Note that this automatic top/bottom rule adding
is disabled in longtable. row/colsep tweaks the row spacing with arraystretch or
adjusts the tabcolsep length (an integer must be used, the result is multiplied by 6pt).
For example:

\settabular{nopad,tbrule,rowsep=2,colsep=2} % or
\settabular{nopad=false,tbrule=false} % to set the switches to off

2 Debugging

You can toggle log output debugging with \lttdebugON and \lttdebugOFF. The mes-
sages will be printed in a format like so:

vvvvv msg1 (lutabulartools)
msg2
^^^^^

1

kalekje@gmail.com

\lttdebugprt can be used pretty-print the lutabt module and its attributes—useful
for checking the “state” of the package.

3 \MC – Magic Cell

\MC (magic cell) combines the facilities of \multirow and \multicolumn from the multirow
package, and \makcell from the titular package. With the help of LuaLaTeX, it takes
an easy-to-use cell specification and employs said commands as required. \MC will not
work properly if your table is only 1 column wide (you probably don’t need MC in that
case anyway...). Here is the usage:

\MC * [cell spec] [override multicol] <cell format> {contents}

* This will wrap the entire command in {}. This is necessary for siunitx single-column
width columns. However, the \MC command attempts to detect this automatically.

[cell spec] Any letters placed in this argument are used for cell alignment. You can use one of
three: t, m, b for top, middle, bottom (vertical alignment), and/or l, c, r for horizontal
alignment, in no particular order. By default, \MC will try to autodetect the horizontal
alignment based on the current column. If it can’t, it will be left-aligned. The default
vertical alginment is top. More on this in section 3.1.

This argument can also contain two integers, separated by a comma (if two are used).
C,R, C, or ,R are a valid inputs, where R=rows (int), and C=columns, (int). If you want a
1 column wide, multirow cell, you can pass ,R. These numbers can be negative (positive
numbers occupy columns to the right and rows below, and negative numbers occupy
columns to the left and rows above). If no spec is passed, (argument empty), \MC acts
like a makecell. Additionally, you can pass + in place of C (number of columns wide),
and it will make the cell width fill until the end of the current row.

Examples:
\MC[2,2] means two columns wide, two rows tall.
\MC[2,1] or \MC[2] means two columns wide, one row tall.
\MC[1,2] or \MC[,2] means one column wide, two rows tall.
\MC[+,2], if placed in the first column, occupies the entire row and is two rows tall.
\MC[+,2], if placed in the second column, occupies the second column to the end of the
table and is two rows tall.
In any of these examples, you can place the alignment letters anywhere. So, \MC[l1,2b]
and \MC[1,2 lb] are both left-bottom aligned (spaces are ignored).
Put an _ as the last thing to add a cmidrule under, followed by a trim spec (the thing
that goes in cmidrule()) \MC[+c_l] will add a cmidrule underneath the cell (which
fills until the end of the table), with the left side trimmed.

[override mc] You may want to adjust the column specification of a multicolumn cell,
[@{}c@{}] for example to remove padding between the cell.

2

<cell format> You can place formatting like \bfseries here.

3.1 \MC Defaults

The tabular[*] environment is re-defined to use Lua pattern matching to parse the
column specification of the table. This is done to determine how many columns there
are, and what the current column type is, even if specifications like r@{.}l*{3}{r} are
used. If you have defined a column that expands many, you should register it with
\setMCrepl{?}{??} where ? is your column and ?? is what it expands to. You can
also specify default horizontal and vertical alignments (ie if alignment not passed to \MC)
for an arbitrary column by \setMChordef{?}{l|r|c} and
\setMChordef{?}{t|m|b}, where ? is the column. To add a column that should be
surrounded by brackets for siunitx purposes, do so with \addMCsicol{?}. S is included
by default.

4 \midrulesat

If you’d rather specify the location of midrules outside the table, use \midrulesat{1,2,3}:
a midrule will be placed on rows 1, 2, and 3, for the next table only.

5 Examples

Change the settings for the rest of the doc.

1 \settabular{nopad,tbrule}

5.0.1 A good use for headers

1 \begin{tabular}{ l l l }
2 \MC[+m]<\itshape >{A Decent
3 Example}\\\midrule
4 & \MC[2m_]{Heading} \\
5 \MC[b,-2]{Multi\\Line} & A & B \\\←↩

midrule
6 end & & \\
7 \end{tabular}

A Decent Example
HeadingMulti

Line A B
end

3

5.0.2 A small example

1 \midrulesat{1,2,3}
2 \begin{tabular}{ l l l }
3 a \\
4 b \\
5 c \\
6 d \\
7 \end{tabular}

a
b
c
d

5.0.3 A small example

1 \begin{tabular}{ l l l }\midrule
2 \MC[_]{A} & \MC[mc2,2]{Lttrs} \\
3 \MC[_r]{B} & \\ \cmidrule←↩

{2-3}
4 \MC[_r]{1} & \MC[_r]{A} & \MC[_r]{B}←↩

\\
5 \\
6 \end{tabular}

A Lttrs
B
1 A B

5.0.4 A small bad example

Notice that the top-aligned p-column doesn’t play particularly well with the middle
aligned \MC

1 \begin{tabular}{ p{1cm} l }
2 hello\newline world
3 & \MC[mr]{11\\2} \\
4 \end{tabular}

hello
world

11
2

5.0.5 If you insist on vertical lines

1 \begin{tabular}{|c|c|c|} \hline
2 1 & 2 & 3\\\hline
3 4 & \MC[2,2cm][@{}c@{}|]%
4 <\ttfamily >{5}\\\cline{1-1}
5 & \MC[2][r|]{} \\\hline%hacky fix
6 6 & 7 & 8\\\hline
7 \end{tabular}

1 2 3
4

5

6 7 8

4

5.0.6 A perhaps useful example

1 \begin{tabularx}{\linewidth}{S[table-←↩
format=2.1,table-alignment=left]X}

2 % err & ... \\% ERROR, not wrap
3 \MC{Error,\%} & Comment \\% MC ←↩

helps
4 3.1 & \MC[,2]{multi-line\\comment}\\
5 10.1& \\
6 \MC[2c]{... ...} \\
7 \end{tabularx}

Error,% Comment
3.1 multi-line

comment10.1
... ...

5.0.7 A messy example

1 \begin{tabular}{| c | c | c | c | c |←↩
c |}\toprule

2 \MC[2,2cm]<\ttfamily >{2,2cm} & \MC←↩
[2r]<\ttfamily >{2r} & 5 & \MC[,2b←↩
]<\ttfamily >{,2b}\\

3 & & 3 & 4 & 5 & \\\midrule
4 1 & 2 & \MC[2l][@{}l]<\ttfamily >{2l ←↩

(\@\{\}l)} & 5 & 6666\\\cmidrule←↩
{3-4}

5 1 & \MC[+r]<\ttfamily >{+r} \\
6 \\
7 1 & 2 & 3 & 4 & 5 & \MC[,-2]<\←↩

ttfamily >{,\\-2}\\
8 \end{tabular}

2,2cm
2r 5

,2b3 4 5
1 2 2l ({}l) 5 6666
1 +r

1 2 3 4 5
,
-2

5

6 Some additional rules

This package also redefines the booktabs midrules.
\gmidrule is a full gray midrule.

By taking advantage of knowing how many columns there are (if you chose to redefine
tabular), you can specify individual column numbers (for a one column wide rule), or
reference with respect to the last column (blank, +1, +0, or + means last column, +2
means second last column, for example) or omit the last number.

\cmidrule is a single partial rule, with the above features
\gcmidrule is a single partial gray rule, with the above features

You can add multiple cmidrule’s with the (g)cmidrules command. Separate with a
comma. You can apply global trimming of the rules with the () optional argument, and
then override it for a specific rule by placing r or l with the span specification.

\gcmidrules Can produce multiple, light gray partial rules
\cmidrules Can produce multiple black partial rules.

Here’s an example:

1 \begin{tabular}{c c c c c c}
2 a & 2 & 3 & 4 & 5 & 6\\
3 \cmidrule{+1} % rule on last ←↩

column
4 b & 2 & 3 & 4 & 5 & 6\\
5 \cmidrules{1,3-+3,+} % rule on ←↩

first col, third to third last←↩
col, and last col

6 c & 2 & 3 & 4 & 5 & 6\\
7 \cmidrules{1,3-+3rl,+} % same as ←↩

above, but trim middle
8 d & 2 & 3 & 4 & 5 & 6\\
9 \cmidrules(l){1,r3-+3,+1}% trim ←↩

left for all, but only trim ←↩
right for middle rule

10 e & 2 & 3 & 4 & 5 & 6\\
11 \gcmidrule{+1} % rule on last ←↩

column
12 f & 2 & 3 & 4 & 5 & 6\\
13 \gcmidrules{1,3-+3,+} % rule on ←↩

first col, third to third last←↩
col, and last col

14 g & 2 & 3 & 4 & 5 & 6\\
15 \gcmidrules{1,3-+3rl,+} % same as←↩

above, but trim middle
16 h & 2 & 3 & 4 & 5 & 6\\
17 \gcmidrules(l){1,r3-+3,+1}% trim ←↩

left for all, but only trim ←↩
right for middle rule

18 \end{tabular}

a 2 3 4 5 6
b 2 3 4 5 6
c 2 3 4 5 6
d 2 3 4 5 6
e 2 3 4 5 6
f 2 3 4 5 6
g 2 3 4 5 6
h 2 3 4 5 6

6

7 \midruleX - Midrule every Xth row

With this command, you can place a rule every X rows for the next table made (place
command outside of table). You can configure the step size and what kind of midrule
you prefer with the following key-val syntax, with default values below:
\midruleX{step=5,rule=midrule,cntr=0,head=0,long=false}
step is the number of rows before applying the rule set by rule.

Concerning longtables: If long is set to true (or the key is present), \midruleX will
also add a unique \label{} on each ro (to detect page changes), and if the row starts
on a newpage, resets the row counter.

Use optional parameter \midruleX*[o|n|f]{} to control expansion of the key-val set-
tings ([n] for not expanded is default). Before you want counting to begin, or anywhere
in the table, you could apply \resetmidruleX[cntr] to an arbitrary value: cntr is nor-
mally incremented by 1 each row. You may want to avoid header rows being counted,
or rows being underlined near the end of a table, for example. If you want to skip the
first x rows with \midruleX, set head=x (which is equivalent to cntr=-x). If you want
to skip the auto-ruling at that ro x (say a gray one) and instead use a midrule, use
head*=x.

Note: Use \noalign{\resetmiduleX} if you need place a rule on the same line the reset
takes place (ie. in a cell before \\).

7.1 \midruleX examples

1 \midruleX{step=3,rule=gmidrule ,head←↩
*=1}

2 \begin{tabular}{rclc}
3 % ^^^ inject midruleX
4 Num & . & . & . \\
5 1 & & & \\
6 2 & & & \\
7 3 & & & \\
8 4 & \MC[2,2]{Hi\\world} \\
9 5 & & & \\
10 6 & & & \\
11 7 & & & \\
12 8 & & & \\
13 9 & & & \\
14 10 & & & \\
15 11 & & & \\
16 \resetmidruleX % resest
17 % so no bottom gray rule
18 12 & & & \\
19 \end{tabular}

Num . . .
1
2
3
4 Hi

world5
6
7
8
9

10
11
12

7

Here’s an example with long table. Notice the gray rules reliably appear 3 rows after
each header.

\midruleX{long=true,step=3,rule="\gcmidrules{1r,2-}"}
\def\tblhead{\toprule No & Name & Place & other\\\midrule}
\def\tblcontinued{\MC[+l]{Continued...}\\}
\def\tblcontinues{\MC[+r]{...Continues}\\}
\begin{longtable}{rclc}

\tblhead\endfirsthead
\tblcontinued\tblhead\endhead % all the lines above this will be repeated on every page
\tblcontinues\endfoot
\bottomrule End.\endlastfoot
\resetmidruleX

1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
5 & & & \\
6 & & & \\
7 & & & \\
8 & & & \\
9 & & & \\
10 & & & \\
11 & & & \\
12 & \MC[2,-2](){Hi\\world} \\
13 & & & \\
14 & & & \\
15 & & & \\\newpage
16 & \MC[2,2]{Hi\\world} \\
17 & & & \\
18 & & & \\\resetmidruleX
19 & & & \\
\end{longtable}

No Name Place other

1
2 hi
3
4
5

...Continues

8

...
Continued...

No Name Place other

6
7
8
9

10
11
12

Hi
world

13
14
15

...Continues

9

...
Continued...

No Name Place other

16
Hi

world
17
18
19

End.

10

	\settabular
	Debugging
	\MC – Magic Cell
	\MC Defaults

	\midrulesat
	Examples
	A good use for headers
	A small example
	A small example
	A small bad example
	If you insist on vertical lines
	A perhaps useful example
	A messy example

	Some additional rules
	\midruleX - Midrule every Xth row
	\midruleX examples

