
CSL
The necessity to make sound backends transparent

Tim Janik <timj@gtk.org>
Stefan Westerfeld <stefan@space.twc.de>
http://sfk.evilplan.org/csl/csl-paper.ps

Abstract

In this paper, we examine how different approaches to sound input and
output handling are currently used in the free software landscape. We
discuss kernel interfaces like oss and alsa, sound server approaches like
aRtsd, ASD, ESound and NAS and requirements by applications or
application suites like GNOME, KDE, WINE and XMMS. We proceed
to show how different interoperability problems arise from the very
heterogenous landscape, which affect both, developers and end users.
Finally, we suggest solving these issues by introducing an abstraction
for various sound backends, and present a sample implementation called
CSL (common sound layer).

1 Many different aproaches to sound
I/O

The theme of this paper is to show the benefits of
a standardized sound device programming interface,
that has the potential to ease the life of many
developers and users who are involved with sound
processing application. At present, unix applications
which require access to sound input and output
devices are forced to support a variety of different
APIs1 because there is no standard way to access
sound drivers on different unix variants, or even on
the same system if user space solutions, such as
sound daemons2 are also meant to be supported. An
exemplary survey, as shown in Table 1, counts no
less than 18 different sound driver backends included
into commonly used sound processing applications.
On the one side, there are kernel driver backends
for systems such as HP-UX, Sun/Solaris, SGI/Irix,
AIX, MacOS and BSD, to name just a few, and on
the other side there are backends to support Sound
Daemons such as ESound, aRts, ASD, NAS or AF.

1.1 Kernel Interfaces

On modern operating systems, developers usually
don’t have to deal with hardware devices directly.
Instead, the kernel will provide appropriate func-
tionality to access different kinds of soundcards. On
linux, there are two commonly used ways to access a

1API - Application Programming Interface
2With Sound Daemon we generally refer to user space

programs which also provide sound I/O facilities as explained
in more detail in chapter 1.2.

soundcard using a kernel driver: OSS and ALSA as
shown in figure 1.

The OSS API is very widely used since it has been
around for several years. A big advantage of the
API from the developer point of view is, that it
practically hasn’t changed during this time. OSS
drivers are included in the linux kernel, which means
that applications can rely on OSS usually being
available, and commercial OSS drivers are available
for many other unix systems. Our comparision in
table 1 shows, that OSS is the defacto standard
which most sound applications support.

By comparision, the ALSA API was developed to
provide an Advanced Linux Sound Architecture for
the future. It is not yet finished, and there have
been API changes during the development period, to
incorporate feedback from the developers who have
been using it. ALSA supports advanced audio and
MIDI hardware and software much better than OSS.
Quite a few applications support ALSA already,
and a significant number of linux distributions are
shipping with it. The inclusion into the mainstream
kernel, which will also make the API a stable and
reliable target for developers is expected during the
linux 2.5 development cycle, so that ALSA might
replace OSS for linux applications in a few years.

1.2 Sound Servers

Many hardware drivers are sufficiently abstracted to
support concurrent use by applications, for instance
a hard disk may be used by two or more applications

1

D S
i u
r n

E e S /
x c G S
t t E I o
r S S M / l W

A a a B o o H a M O I a i
A L R B e u u P c i N S O Q R r n

A I S t S O n n U O N A / S N I i 2
F X A s D S d d X S T S 2 S X X s 3

amp X X X X X X X
ASD X
aRts X X 1 X X X X X

ESound X X X X X X X
Free Amp X X X X X X X X X X

Glame X X X X
libAO X X X X X X X X
libSDL X X X X X X X X X X X

MikMod X X X2 X X X X X X X X X
mpg123 X X X X X X X X X X X X
mpg321 X X X X X

SOX X X X
Timidity X X X X X X X X

Wine X
XMMS X X X X X X X

1) Will be possible with CSL
2) Plus an ancient UltraSound Driver

Table 1: Sound driver backends in commonly used sound applications

simultaneously and is not blocked by one application
opening the device upon startup and closing it at
shutdown time. The abstraction supplied here to
share hard disk resources is widely known as file.

Graphic cards on the other hand are usually ab-
stracted in a different way. Here, the kernel often
just provides low level routines to access the cards
pixel buffer and to switch graphics or text mode. An
extra user space program is then run which interfaces
normal application to the card, allowing for resource
sharing. The most commonly known example in the
unix community is the Xserver provided by the X11
windowing system.

Following the basic idea of abstracting access to
graphic devices by means of an Xserver, several
projects started out aiming at repeating X11s success
in the sound domain. For instance, the user might
want to listen to music using an Ogg/Vorbis [1]
player like ogg123 or XMMS and still hear audio
notifications when new email arrives, but most kernel
level sound drivers are unable to give access to the
sound card to more than one application. This is
often perceived as a serious limitation.

Sound servers address this issue by combining

disk
Hard

Card
Sound

Adapter
Graphics

XMMS

Kernel
ALSA

OSS /

Figure 1: A single application using the kernels
sound card driver solely.

sound I/O streams from multiple applications and
interfacing with the kernel driver, as shown in figure
2. Thereby, they provide more than one application
with sound I/O facilities at the same time, even if
the kernel driver does not support this.

Another straightforward idea in the sound server
concept is providing access to sound functionality

2

disk
Hard

Card
Sound

Adapter
Graphics

Soundserver (NAS, aRts, etc.)

XMMS mpg321 BEAST

Kernel

Figure 2: A sound server providing multiple appli-
cations with access to a single sound card.

over network connections. When running remote
X11 applications, it is desired for sound to be played
back on the local machine rather then the remote
machine.

Sound servers can also be used to serve a variety
of addtional needs. They can make different au-
dio applications interoperable, route audio streams
between the applications or process them with
additional effects, to name just a few.

1.3 Media Frameworks

Recently, several new projects occoured which are
aiming at an even higher level of abstraction for deal-
ing with media streams 3, for instance GStreamer,
the Java Media Framework or aRts. They perform
operations such as encoding, decoding, framing,
processing, transfer and rendering of media contents.

For the scope of this paper, it is enough to
recognize that, while media frameworks solve low-
level sound I/O issues for the application developer,
they themselves suffer from the very problem of low-
level sound API diversities which forces them into
implementing a variety of different backends.

3Media Streams - Data flow of audio, MIDI and video
content

2 Sound Applications in the Free
Software Landscape

Unfortunately, the current set of abtraction layers
as shown in the previous chapter are by large not
sufficient, to conveniently solve the problems users
and developers are currently facing. In the following,
we’re going to examine these problems in a detailed
manner.

2.1 Developer Requirements

Developers face several challenges during the course
of sound application development.

They need to support various sound backends, some
of which are platform specific and all of which are
implemented using a different API. This significantly
increases complexity of many sound applications.

As free software is often written and maintained by
a small team of core developers, who usually do
not have access to all platforms their software runs
on, a lot of these backends tend to be third party
contributions, which makes them hard to maintain
over a longer period of time.

The need to reimplement various sound backends
for every new sound application presents a gross
duplication of implementation effort. Projects with
a small circle of contributors are especially suffering
from this and often can’t fully exploit their potential
user base due to portability issues remaining unfixed
for a long period of time.

Newly occuring sound APIs, such as modernized
kernel drivers, or support for a new sound server can-
not be planned for in advance, and cause continued
maintenance requirement of sound backends in every
single sound application.

And last but not least, different sound drivers require
different degrees of integrational work, for instance
an OSS driver exports file descriptors that have to be
polled, while advanced sound servers like aRts may
require full main loop and language integration and
impose additional library dependancies.

2.2 User Requirements

End users have varying requirements, often situation
dependant. For instance, running a media player in a
university may mean the user has to use headphones
and reroute sound streams from a central server to
a local workstation. Or in case the user is playing

3

a game, he probably wants to disable sound servers
and let the application use the kernel drivers without
further task switches in order to reduce latency.

Another example would be using a composition
application of the KDE desktop project like brahms
which is based on the aRts media framework and
interfacing it to a sound server which is used to serve
GNOME programs. Unfortunately it is not currently
possible to get KDE and GNOME applications to
produce sound side-by-side, as both desktop projects
have distinct sound server requirements, namely
aRts and ESound, which both lack the needed
backends to interface with different sound servers.

To allow users to get these and similar setups to
work, applications need to leave the choice up to
the user and offer a variety of configurable backends
without imposing restrictions which are for example
due to platform and/or portability issues. Ideally,
sound backend configuration (such as choice of
daemon and routing requirements) of the different
sound applications used by a user is done in the same
standardized way and understood by all applications
utilized.

2.3 Application Categories

Applications deal with sound in various ways which
can be roughly categorized into:

• Casual Sound Needs
Some applications surve a purpose which
is completely unrelated to sound, and only
casually need to produce some audio output.
A window manager, which produces sound if a
window closes is one example.

• Media Players
Media Players are dedicated applications, with
the sole purpose of playing a media file,
normally either audio or video. Examples are
xmms, ogg123 or noatun.

• Games
For games it is often essential to play sounds
and music in tight reaction to what the user
does. Examples are quake, tuxracer or parsec.

• Composition or Synthesis
There are a lot of applications dedicated to
creating, recording or editing music, such as
brahms, BEAST or ardour.

• Infrastructure Applications
Some applications like sound servers do not
have a purpose of its own, but exist as in-
frastructure components. Examples are aRts,
ASD, ESound and NAS.

3 Designing a common Abstraction

As we have seen in the previous section, the current
state of affairs is causing quite a few problems
to both, developers and users. Considering the
possibilities of how they can be adressed in the most
elegant way, we suggest implementing a new unified
abstraction for doing sound I/O, which can be used
by the majority of the applications discussed. To do
this, we’ll start by examining which functionality is
commonly needed.

3.1 Application Requirements

First of all, there are applications with what we
called Casual Sound Needs. These usually just need
a very simple way to play back a media file, in order
to notify the user. For this, a simple API which can
play back a sound file (like .wav) on demand should
be sufficient.

Next, there are Media Players. Looking at the source
code of media players we found that most of them
come with an extensive collection of backends to
support playing back sound on a variety of platforms.
Most of them just need to play a stream of audio
data. However, there is an interesting requirement
for those media players which provide a visualization
of the music. This usually needs to be synchronized
to the music, which means that the player needs to
know which sample is being played right now. Of
course, this is also necessary for synchronizing video
output with audio output.

We’ll find a similar, yet a little different requirement
in Games. Here, it is important that the reaction
of the user is transformed into an appropriate sound
effect as soon as possible, to be synchronized with
what happens on the screen. Where a media player
can use a potentially huge amount of buffering to
avoid dropouts during playback, games need precise
control over the amount of buffering in order to
control latency. If the underlying driver supports it,
memory mapping the output might be useful, but
this is really just another way of saying that the
buffering between the producer (the game) and the
consumer (kernel or sound server) must be small,
and well-controlled by the application.

Applications concerned with Composition or Synthe-
sis might also need exact control over the amount
of buffering (latency) and the ability to record and
play audio streams. However, depending on how
specialized these applications are, they might need
to exploit the capabilities of special hardware up
to its limits, so a few of these applications will
eventually continue to provide support for several

4

seperate driver backends.

As Infrastructure Applications usually need to pro-
vide whatever other applications need, their require-
ments include exact buffer control, and playback and
recording of streams.

3.2 Considering Alternatives

We think that the optimal way to address these
requirements and to solve the problems discussed in
the previous sections of this paper is to introduce
a new, dependancyless C library which only cares
about sound I/O. But lets first look at a few possible
alternatives.

First of all, one might argue that the kernel
should fulfill all application requirements, ultimately
obsoleting the need for sound servers entierly, and
making applications interoperable. This comes close
to the goals persued by the ALSA project. However,
as a linux specific solution, this doesn’t adress the
more general portability problem, and a significant
user base remains, who will still want to use sound
servers for network transparency or routing between
applications.

Another alternative is saying that media frameworks
are to perform the required abstraction in the future,
so that developers will not need to care about sound
I/O details. However, media frameworks themselves
need to be implemented somehow, and there the
portability problem arises again. There are also
applications which don’t use media frameworks.

One might also suggest, that a great way of solving
the issue is standarizing a protocol for sound servers,
similar to the X11 protocol. Then, in the future, all
applications just need to use this protocol, and no
more platform specific backends need to be written.
However, different sound servers currently use very
different protocols, and a lot of innovation and
discussion is going on here, so a general consensus
is lacking.

Finally, one might argue that having a common
sound server running all the time or at least
standarizing the sound server API instead of the
protocol solves the issue completely. However,
persuing this path requires the following implications
to be taken into account: First, not all systems
have sufficient resources to run a sound server,
especially on embedded linux systems. Second,
the additional performance penalty involved with
context switches might not be affordable by low
latency applications. Third, implementing cascading
sound servers involves additional effort.

3.3 Our Approach

So our conclusion is that a new abstraction layer
for sound I/O has to be introduced. It should be
a dependancyless C library, which is just a very
thin wrapper around the various different sound
APIs. It should provide a simple and straight
forward interface to the developer and fulfill the
requirements of most applications. In a simple setup,
this involves playback ability for samples, for most
other applications it is sufficient to provide input and
output of sound streams with control of the latency
involved.

Having one single library supported by every applica-
tion, the maintainability and extensibility problems
outlined in the previous sections should be effectively
solved, while innovation in applications, sound
servers and operating systems can continue. The
library should be structured in a way, so that it is
easy to add new backends, which immediately are
available to all applications.

Given that we want the library to be usable by all
kinds of applications, it should not add percievable
overhead or introduce a huge dependancy chain.
This is reasonably easy to achive with a thin wrapper
layer, which can pull in backends on demand. It
also needs to be very portable, because it will
have to handle sound I/O in applications with high
portability demands. Finally, the license should
be liberal enough to allow it to be used in every
application, for instance even in closed source games.

4 The CSL Project

As a result to the observations presented so far,
the authors started out on an implementation of
the proposed common abstraction, called CSL - the
Common Sound Layer.

CSL is a plain C implementation without further
dependancies, which provides a common API for
handling sound I/O. It is intended to supply appli-
cation programmers with a convenient way to access
sound devices on various platforms, to interface to
a variety of sound servers and to configure sound
ouptut modalities regardless of the actual backend
being used.

4.1 API features

We’ll now give a brief survey of the corner aspects of
the CSL API:

5

Initialization, in it’s simplest form is performed by
calling

CslErrorType
csl_driver_init (

const char *driver_name,
CslDriver **driver);

which also has a variant for threaded applica-
tions csl_driver_init_mutex() and a counterpart
csl_driver_shutdown().

Sound streams are opened and closed with the
following functions:

CslErrorType
csl_pcm_open_output (

CslDriver *driver,
const char *role,
unsigned int rate,
unsigned int n_channels,
CslPcmFormatType format,
CslPcmStream **stream_p);

CslErrorType
csl_pcm_open_input (

CslDriver *driver,
const char *role,
unsigned int rate,
unsigned int n_channels,
CslPcmFormatType format,
CslPcmStream **stream_p);

void
csl_pcm_close (

CslPcmStream *stream);

These follow for the most part the commonly used
OSS API, but also allow for stream role names to be
supplied used by sound server backends to identify
and if neccessary reroute streams.

Sound input and output facilities are also supported,
as well as status inqueries:

int
csl_pcm_read (

CslPcmStream *stream,
unsigned int n_bytes,
void *bytes);

int
csl_pcm_write (

CslPcmStream *stream,
unsigned int n_bytes,
void *bytes);

CslErrorType
csl_pcm_get_status (

CslPcmStream *stream,
CslPcmStatus *status);

As an alternative programming model, the user may
choose to hook his code up through callbacks which
are invoked after select(2)ing on the associated file
descriptors and dispatching file descriptor events:

unsigned int
csl_poll_get_fds (

CslDriver *driver,
unsigned int n_fds,
CslPollFD *fds);

void
csl_poll_handle_fds (

CslDriver *driver,
unsigned int max_fds,
CslPollFD *fds);

typedef void (*CslPcmStreamCallback) (
void *user_data,
CslPcmStream *stream);

void
csl_pcm_set_callback (

CslPcmStream *stream,
CslPcmStreamCallback notify,
void *user_data,
CslDestroy user_data_destroy);

/* convenience variant to select on file descriptors
* and handle events in one go
*/

int
csl_poll_wait (

CslDriver *driver,
unsigned int n_user_fds,
CslPollFD *user_fds,
unsigned int time_in_ms);

References

[1] http://www.xiph.org/ogg/vorbis/

About the authors:

Tim Janik and Stefan Westerfeld are both studying Computer

Science at the university of Hamburg in Germany and have

been involved with the production of music and synthesis

software for many years.

Tim Janik is core developer of the BEAST/BSE project

(http://beast.gtk.org).

Stefan Westerfeld is core developer of the aRts project

(http://www.arts-project.org).

6

Contents

1 Many different aproaches to sound I/O 1

1.1 Kernel Interfaces 1

1.2 Sound Servers 1

1.3 Media Frameworks 3

2 Sound Applications in the Free Soft-
ware Landscape 3

2.1 Developer Requirements 3

2.2 User Requirements 3

2.3 Application Categories 4

3 Designing a common Abstraction 4

3.1 Application Requirements 4

3.2 Considering Alternatives 5

3.3 Our Approach 5

4 The CSL Project 5

4.1 API features 5

7

