
BASH Programming - Introduction HOW-TO

Table of Contents
BASH Programming - Introduction HOW-TO...1

by Mike G mikkey at dynamo.com.ar...1
1. Introduction..1
1.1 Getting the latest version...1
1.2 Requisites...1
1.3 Uses of this document..1
2. Very simple Scripts..1
2.1 Traditional hello world script...1
2.2 A very simple backup script..2
3. All about redirection..2
3.1 Theory and quick reference...2
3.2 Sample: stdout 2 file..2
3.3 Sample: stderr 2 file...3
3.4 Sample: stdout 2 stderr..3
3.5 Sample: stderr 2 stdout..3
3.6 Sample: stderr and stdout 2 file...3
4. Pipes...3
4.1 What they are and why you'll want to use them..3
4.2 Sample: simple pipe with sed..4
4.3 Sample: an alternative to ls -l *.txt..4
5. Variables..4
5.1 Sample: Hello World! using variables...4
5.2 Sample: A very simple backup script (little bit better)..4
5.3 Local variables...5
6. Conditionals...5
6.1 Dry Theory...5
6.2 Sample: Basic conditional example if .. then...6
6.3 Sample: Basic conditional example if .. then ... else...6
6.4 Sample: Conditionals with variables...6
7. Loops for, while and until..6
7.1 For sample..7
7.2 C-like for..7
7.3 While sample...7
7.4 Until sample...7
8. Functions..8
8.1 Functions sample...8
8.2 Functions with parameters sample...8
9. User interfaces...9
9.1 Using select to make simple menus...9
9.2 Using the command line..9
10. Misc...9
10.1 Reading user input with read...9
10.2 Arithmetic evaluation...10
10.3 Finding bash...10
10.4 Getting the return value of a program..11
10.5 Capturing a commands output...11
10.6 Multiple source files..11
11. Tables...11

BASH Programming - Introduction HOW-TO

i

Table of Contents
BASH Programming - Introduction HOW-TO

11.1 String comparison operators..11
11.2 String comparison examples..12
11.3 Arithmetic operators..12
11.4 Arithmetic relational operators..13
11.5 Useful commands...13
12. More Scripts...16
12.1 Applying a command to all files in a directory..16
12.2 Sample: A very simple backup script (little bit better)..16
12.3 File re-namer..17
12.4 File renamer (simple)...18
13. When something goes wrong (debugging)..19
13.1 Ways Calling BASH..19
14. About the document...19
14.1 (no) warranty..19
14.2 Translations..19
14.3 Thanks to..19
14.4 History...20
14.5 More resources...20

BASH Programming - Introduction HOW-TO

ii

BASH Programming - Introduction HOW-TO

by Mike G mikkey at dynamo.com.ar

Thu Jul 27 09:36:18 ART 2000

This article is intended to help you to start programming basic-intermediate shell scripts. It does not intend to
be an advanced document (see the title). I am NOT an expert nor guru shell programmer. I decided to write
this because I'll learn a lot and it might be useful to other people. Any feedback is appreciated, especially in
the patch or pull request form. :)

1. Introduction

1.1 Getting the latest version

https://www.tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

1.2 Requisites

Familiarity with GNU/Linux command lines, and familiarity with basic programming concepts is helpful.
While this is not a programming introduction, it explains (or at least tries) many basic concepts.

1.3 Uses of this document

This document tries to be useful in the following situations

You have an idea about programming and you want to start coding some shell scripts.•
You have a vague idea about shell programming and want some sort of reference.•
You want to see some shell scripts and some comments to start writing your own.•
You are migrating from DOS/Windows (or already did) and want to make "batch" processes.•
You are a complete nerd and read every how-to available.•

2. Very simple Scripts

This HOW-TO will try to give you some hints about shell script programming strongly based on examples.

In this section you'll find some little scripts which will hopefully help you to understand some techniques.

2.1 Traditional hello world script
 #!/bin/bash
 echo Hello World

This script has only two lines. The first indicates the system which program to use to run the file.

BASH Programming - Introduction HOW-TO 1

The second line is the only action performed by this script, which prints 'Hello World' on the terminal.

If you get something like ./hello.sh: Command not found. Probably the first line '#!/bin/bash' is wrong, issue
whereis bash or see 'finding bash' to see how should you write this line.

2.2 A very simple backup script
 #!/bin/bash
 tar -cZf /var/my-backup.tgz /home/me/

In this script, instead of printing a message on the terminal, we create a tar-ball of a user's home directory.
This is NOT intended to be used, a more useful backup script is presented later in this document.

3. All about redirection

3.1 Theory and quick reference

There are 3 file descriptors, stdin, stdout and stderr (std=standard).

Basically you can:

redirect stdout to a file1.
redirect stderr to a file2.
redirect stdout to a stderr3.
redirect stderr to a stdout4.
redirect stderr and stdout to a file5.
redirect stderr and stdout to stdout6.
redirect stderr and stdout to stderr7.

1 'represents' stdout and 2 stderr.

A little note for seeing the output of these commands: with the less command you can view both stdout
(which will remain on the buffer) and the stderr that will be printed on the screen, but erased as you try to
'browse' the buffer.

3.2 Sample: stdout 2 file

This will cause the output of a program to be written to a file.

 ls -l > ls-l.txt

Here, a file called 'ls-l.txt' will be created and it will contain what you would see on the screen if you type the
command 'ls -l' and execute it.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 2

3.3 Sample: stderr 2 file

This will cause the stderr output of a program to be written to a file.

 grep da * 2> grep-errors.txt

Here, a file called 'grep-errors.txt' will be created and it will contain what you would see the stderr portion of
the output of the 'grep da *' command.

3.4 Sample: stdout 2 stderr

This will cause the stdout output of a program to be written to the same filedescriptor as stderr.

 grep da * 1>&2

Here, the stdout portion of the command is sent to stderr, you may notice that in different ways.

3.5 Sample: stderr 2 stdout

This will cause the stderr output of a program to be written to the same filedescriptor as stdout.

 grep * 2>&1

Here, the stderr portion of the command is sent to stdout, if you pipe to less, you'll see that lines that normally
'disappear' (as they are written to stderr) are being kept now (because they're on stdout).

3.6 Sample: stderr and stdout 2 file

This will place every output of a program to a file. This is suitable sometimes for cron entries, if you want a
command to pass in absolute silence.

 rm -f $(find / -name core) &> /dev/null

This (thinking on the cron entry) will delete every file called 'core' in any directory. Notice that you should be
pretty sure of what a command is doing if you are going to wipe its output.

4. Pipes

This section explains in a very simple and practical way how to use pipes, and why you may want to use
them.

4.1 What they are and why you'll want to use them

Pipes let you use (very simple, I insist) the output of a program as the input of another one

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 3

4.2 Sample: simple pipe with sed

This is very simple way to use pipes.

 ls -l | sed -e "s/[aeio]/u/g"

Here, the following happens: first the command ls -l is executed, and its output, instead of being printed, is
sent (piped) to the sed program, which in turn, prints what it has to.

4.3 Sample: an alternative to ls -l *.txt

Probably, this is a more difficult way to do ls -l *.txt, but it is here for illustrating pipes, not for solving such
listing dilemma.

 ls -l | grep "\.txt$"

Here, the output of the program ls -l is sent to the grep program, which, in turn, will print lines which match
the regex "\.txt$".

5. Variables

You can use variables as in any programming languages. There are no data types. A variable in bash can
contain a number, a character, a string of characters.

You have no need to declare a variable, just assigning a value to its reference will create it.

5.1 Sample: Hello World! using variables
 #!/bin/bash
 STR="Hello World!"
 echo $STR

Line 2 creates a variable called STR and assigns the string "Hello World!" to it. Then the VALUE of this
variable is retrieved by putting the '$' in at the beginning. Please notice (try it!) that if you don't use the '$'
sign, the output of the program will be different, and probably not what you want it to be.

5.2 Sample: A very simple backup script (little bit better)
 #!/bin/bash
 OF=/var/my-backup-$(date +%Y%m%d).tgz
 tar -cZf $OF /home/me/

This script introduces another thing. First of all, you should be familiarized with the variable creation and
assignation on line 2. Notice the expression '$(date +%Y%m%d)'. If you run the script you'll notice that it
runs the command inside the parenthesis, capturing its output.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 4

Notice that in this script, the output filename will be different every day, due to the format switch to the date
command(+%Y%m%d). You can change this by specifying a different format.

Some more examples:

echo ls

echo $(ls)

5.3 Local variables

Local variables can be created by using the keyword local.

 #!/bin/bash
 HELLO=Hello
 function hello {
 local HELLO=World
 echo $HELLO
 }
 echo $HELLO
 hello
 echo $HELLO

This example should be enought to show how to use a local variable.

6. Conditionals

Conditionals let you decide whether to perform an action or not, this decision is taken by evaluating an
expression.

6.1 Dry Theory

Conditionals have many forms. The most basic form is: if expression then statement where 'statement' is only
executed if 'expression' evaluates to true. '2<1' is an expresion that evaluates to false, while '2>1' evaluates to
true.xs

Conditionals have other forms such as: if expression then statement1 else statement2. Here 'statement1' is
executed if 'expression' is true,otherwise 'statement2' is executed.

Yet another form of conditionals is: if expression1 then statement1 else if expression2 then statement2 else
statement3. In this form there's added only the "ELSE IF 'expression2' THEN 'statement2'" which makes
statement2 being executed if expression2 evaluates to true. The rest is as you may imagine (see previous
forms).

A word about syntax:

The base for the 'if' constructions in bash is this:

if [expression];

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 5

then

code if 'expression' is true.

fi

6.2 Sample: Basic conditional example if .. then
 #!/bin/bash
 if ["foo" = "foo"]; then
 echo expression evaluated as true
 fi

The code to be executed if the expression within braces is true can be found after the 'then' word and before 'fi'
which indicates the end of the conditionally executed code.

6.3 Sample: Basic conditional example if .. then ... else
 #!/bin/bash
 if ["foo" = "foo"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

6.4 Sample: Conditionals with variables
 #!/bin/bash
 T1="foo"
 T2="bar"
 if ["$T1" = "$T2"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

7. Loops for, while and until

In this section you'll find for, while and until loops.

The for loop is a little bit different from other programming languages. Basically, it let's you iterate over a
series of 'words' within a string.

The while executes a piece of code if the control expression is true, and only stops when it is false (or a
explicit break is found within the executed code.

The until loop is almost equal to the while loop, except that the code is executed while the control expression
evaluates to false.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 6

If you suspect that while and until are very similar you are right.

7.1 For sample
 #!/bin/bash
 for i in $(ls); do
 echo item: $i
 done

On the second line, we declare i to be the variable that will take the different values contained in $(ls).

The third line could be longer if needed, or there could be more lines before the done (4).

'done' (4) indicates that the code that used the value of $i has finished and $i can take a new value.

This script has very little sense, but a more useful way to use the for loop would be to use it to match only
certain files on the previous example

7.2 C-like for

fiesh suggested adding this form of looping. It's a for loop more similar to C/perl... for.

 #!/bin/bash
 for i in `seq 1 10`;
 do
 echo $i
 done

7.3 While sample
 #!/bin/bash
 COUNTER=0
 while [$COUNTER -lt 10]; do
 echo The counter is $COUNTER
 let COUNTER=COUNTER+1
 done

This script 'emulates' the well known (C, Pascal, perl, etc) 'for' structure

7.4 Until sample
 #!/bin/bash
 COUNTER=20
 until [$COUNTER -lt 10]; do
 echo COUNTER $COUNTER
 let COUNTER-=1
 done

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 7

8. Functions

As in almost any programming language, you can use functions to group pieces of code in a more logical way
or practice the divine art of recursion.

Declaring a function is just a matter of writing function my_func { my_code }.

Calling a function is just like calling another program, you just write its name.

8.1 Functions sample
 #!/bin/bash
 function quit {
 exit
 }
 function hello {
 echo Hello!
 }
 hello
 quit
 echo foo

Lines 2-4 contain the 'quit' function. Lines 5-7 contain the 'hello' function If you are not absolutely sure about
what this script does, please try it!

Notice that functions don't need to be declared in any specific order.

When running the script you'll notice that first: the function 'hello' is called, second the 'quit' function, and the
program never reaches line 10.

8.2 Functions with parameters sample
 #!/bin/bash
 function quit {
 exit
 }
 function e {
 echo $1
 }
 e Hello
 e World
 quit
 echo foo

This script is almost identical to the previous one. The main difference is the function 'e'. This function, prints
the first argument it receives. Arguments, within functions, are treated in the same manner as arguments given
to the script.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 8

9. User interfaces

9.1 Using select to make simple menus
 #!/bin/bash
 OPTIONS="Hello Quit"
 select opt in $OPTIONS; do
 if ["$opt" = "Quit"]; then
 echo done
 exit
 elif ["$opt" = "Hello"]; then
 echo Hello World
 else
 clear
 echo bad option
 fi
 done

If you run this script you'll see that it is a programmer's dream for text based menus. You'll probably notice
that it's very similar to the 'for' construction, only rather than looping for each 'word' in $OPTIONS, it
prompts the user.

9.2 Using the command line
 #!/bin/bash
 if [-z "$1"]; then
 echo usage: $0 directory
 exit
 fi
 SRCD=$1
 TGTD="/var/backups/"
 OF=home-$(date +%Y%m%d).tgz
 tar -cZf $TGTD$OF $SRCD

What this script does should be clear to you. The expression in the first conditional tests if the program has
received an argument ($1) and quits if it didn't, showing the user a little usage message. The rest of the script
should be clear at this point.

10. Misc

10.1 Reading user input with read

In many occasions you may want to prompt the user for some input, and there are several ways to achive this.
This is one of those ways:

 #!/bin/bash
 echo Please, enter your name
 read NAME
 echo "Hi $NAME!"

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 9

As a variant, you can get multiple values with read, this example may clarify this.

 #!/bin/bash
 echo Please, enter your firstname and lastname
 read FN LN
 echo "Hi! $LN, $FN !"

10.2 Arithmetic evaluation

On the command line (or a shell) try this:

echo 1 + 1

If you expected to see '2' you'll be disappointed. What if you want BASH to evaluate some numbers you
have? The solution is this:

echo $((1+1))

This will produce a more 'logical' output. This is to evaluate an arithmetic expression. You can achieve this
also like this:

echo $[1+1]

If you need to use fractions, or more math or you just want it, you can use bc to evaluate arithmetic
expressions.

If I ran "echo $[3/4]" at the command prompt, it would return 0 because bash only uses integers when
answering. If you ran "echo 3/4|bc -l", it would properly return 0.75.

10.3 Finding bash

From a message from mike (see Thanks to)

you always use #!/bin/bash .. you might was to give an example of

how to find where bash is located.

'locate bash' is preferred, but not all machines have locate.

'find ./ -name bash' from the root dir will work, usually.

Suggested locations to check:

ls -l /bin/bash

ls -l /sbin/bash

ls -l /usr/local/bin/bash

ls -l /usr/bin/bash

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 10

ls -l /usr/sbin/bash

ls -l /usr/local/sbin/bash

(can't think of any other dirs offhand... i've found it in

most of these places before on different system).

You may try also 'which bash'.

10.4 Getting the return value of a program

In bash, the return value of a program is stored in a special variable called $?.

This illustrates how to capture the return value of a program, I assume that the directory dada does not exist.
(This was also suggested by mike)

 #!/bin/bash
 cd /dada &> /dev/null
 echo rv: $?
 cd $(pwd) &> /dev/null
 echo rv: $?

10.5 Capturing a commands output

This little script shows all tables from all databases (assuming you got MySQL installed). Also, consider
changing the 'mysql' command to use a valid username and password.

 #!/bin/bash
 DBS=`mysql -uroot -e"show databases"`
 for b in $DBS ;
 do
 mysql -uroot -e"show tables from $b"
 done

10.6 Multiple source files

You can use multiple files with the command source.

__TO-DO__

11. Tables

11.1 String comparison operators

(1) s1 = s2

(2) s1 != s2

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 11

(3) s1 < s2

(4) s1 > s2

(5) -n s1

(6) -z s1

(1) s1 matches s2

(2) s1 does not match s2

(3) __TO-DO__

(4) __TO-DO__

(5) s1 is not null (contains one or more characters)

(6) s1 is null

11.2 String comparison examples

Comparing two strings.

 #!/bin/bash
 S1='string'
 S2='String'
 if [$S1=$S2];
 then
 echo "S1('$S1') is not equal to S2('$S2')"
 fi
 if [$S1=$S1];
 then
 echo "S1('$S1') is equal to S1('$S1')"
 fi

I quote here a note from a mail, sent buy Andreas Beck, refering to use if [$1 = $2].

This is not quite a good idea, as if either $S1 or $S2 is empty, you will get a parse error. x$1=x$2 or
"$1"="$2" is better.

11.3 Arithmetic operators

+

-

*

/

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 12

% (remainder)

11.4 Arithmetic relational operators

-lt (<)

-gt (>)

-le (<=)

-ge (>=)

-eq (==)

-ne (!=)

C programmer's should simple map the operator to its corresponding parenthesis.

11.5 Useful commands

This section was re-written by Kees (see thank to...)

Some of these commands almost contain complete programming languages. From those commands only the
basics will be explained. For a more detailed description, have a closer look at the main pages of each
command.

sed (stream editor)

Sed is a non-interactive editor. Instead of altering a file by moving the cursor on the screen, you use a script of
editing instructions to sed, plus the name of the file to edit. You can also describe sed as a filter. Let's have a
look at some examples:

 $sed 's/to_be_replaced/replaced/g' /tmp/dummy

Sed replaces the string 'to_be_replaced' with the string 'replaced' and reads from the /tmp/dummy file. The
result will be sent to stdout (normally the console) but you can also add '> capture' to the end of the line above
so that sed sends the output to the file 'capture'.

 $sed 12, 18d /tmp/dummy

Sed shows all lines except lines 12 to 18. The original file is not altered by this command.

awk (manipulation of datafiles, text retrieval and processing)

Many implementations of the AWK programming language exist (most known interpreters are GNU's gawk
and 'new awk' mawk.) The principle is simple: AWK scans for a pattern, and for every matching pattern an
action will be performed.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 13

Again, I've created a dummy file containing the following lines:

"test123

test

tteesstt"

 $awk '/test/ {print}' /tmp/dummy

test123

test

The pattern AWK looks for is 'test' and the action it performs when it found a line in the file /tmp/dummy
with the string 'test' is 'print'.

 $awk '/test/ {i=i+1} END {print i}' /tmp/dummy

3

When you're searching for many patterns, you should replace the text between the quotes with '-f file.awk' so
you can put all patterns and actions in 'file.awk'.

grep (print lines matching a search pattern)

We've already seen quite a few grep commands in the previous chapters, that display the lines matching a
pattern. But grep can do more.

 $grep "look for this" /var/log/messages -c

12

The string "look for this" has been found 12 times in the file /var/log/messages.

[ok, this example was a fake, the /var/log/messages was tweaked :-)]

wc (counts lines, words and bytes)

In the following example, we see that the output is not what we expected. The dummy file, as used in this
example, contains the following text: "bash introduction howto test file"

 $wc --words --lines --bytes /tmp/dummy

2 5 34 /tmp/dummy

Wc doesn't care about the parameter order. Wc always prints them in a standard order, which is, as you can
see: <lines><words><bytes><filename>.

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 14

sort (sort lines of text files)

This time the dummy file contains the following text:

"b

c

a"

 $sort /tmp/dummy

This is what the output looks like:

a

b

c

Commands shouldn't be that easy :-) bc (a calculator programming language)

Bc is accepting calculations from command line (input from file. not from redirector or pipe), but also from a
user interface. The following demonstration shows some of the commands. Note that

I start bc using the -q parameter to avoid a welcome message.

 $bc -q

1 == 5

0

0.05 == 0.05

1

5 != 5

0

2 ^ 8

256

sqrt(9)

3

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 15

while (i != 9) {

i = i + 1;

print i

}

123456789

quit

tput (initialize a terminal or query terminfo database)

A little demonstration of tput's capabilities:

 $tput cup 10 4

The prompt appears at (y10,x4).

 $tput reset

Clears screen and prompt appears at (y1,x1). Note that (y0,x0) is the upper left corner.

 $tput cols

80

Shows the number of characters possible in x direction.

It is higly recommended to be familiarized with these programs (at least). There are tons of little programs
that will let you do real magic on the command line.

[some samples are taken from man pages or FAQs]

12. More Scripts

12.1 Applying a command to all files in a directory.

12.2 Sample: A very simple backup script (little bit better)
 #!/bin/bash
 SRCD="/home/"
 TGTD="/var/backups/"
 OF=home-$(date +%Y%m%d).tgz
 tar -cZf $TGTD$OF $SRCD

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 16

12.3 File re-namer

 #!/bin/sh
 # renna: rename multiple files according to several rules
 # written by felix hudson Jan - 2000

 #first check for the various 'modes' that this program has
 #if the first ($1) condition matches then we execute that portion of the
 #program and then exit

 # check for the prefix condition
 if [$1 = p]; then

 #we now get rid of the mode ($1) variable and prefix ($2)
 prefix=$2 ; shift ; shift

 # a quick check to see if any files were given
 # if none then its better not to do anything than rename some non-existent
 # files!!

 if [$1 =]; then
 echo "no files given"
 exit 0
 fi

 # this for loop iterates through all of the files that we gave the program
 # it does one rename per file given
 for file in $*
 do
 mv ${file} $prefix$file
 done

 #we now exit the program
 exit 0
 fi

 # check for a suffix rename
 # the rest of this part is virtually identical to the previous section
 # please see those notes
 if [$1 = s]; then
 suffix=$2 ; shift ; shift

 if [$1 =]; then
 echo "no files given"
 exit 0
 fi

 for file in $*
 do
 mv ${file} $file$suffix
 done

 exit 0
 fi

 # check for the replacement rename
 if [$1 = r]; then

 shift

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 17

 # i included this bit as to not damage any files if the user does not specify
 # anything to be done
 # just a safety measure

 if [$# -lt 3] ; then
 echo "usage: renna r [expression] [replacement] files... "
 exit 0
 fi

 # remove other information
 OLD=$1 ; NEW=$2 ; shift ; shift

 # this for loop iterates through all of the files that we give the program
 # it does one rename per file given using the program 'sed'
 # this is a simple command line program that parses standard input and
 # replaces a set expression with a give string
 # here we pass it the file name (as standard input) and replace the nessesary
 # text

 for file in $*
 do
 new=`echo ${file} | sed s/${OLD}/${NEW}/g`
 mv ${file} $new
 done
 exit 0
 fi

 # if we have reached here then nothing proper was passed to the program
 # so we tell the user how to use it
 echo "usage;"
 echo " renna p [prefix] files.."
 echo " renna s [suffix] files.."
 echo " renna r [expression] [replacement] files.."
 exit 0

 # done!

12.4 File renamer (simple)
 #!/bin/bash
 # renames.sh
 # basic file renamer

 criteria=$1
 re_match=$2
 replace=$3

 for i in $(ls *$criteria*);
 do
 src=$i
 tgt=$(echo $i | sed -e "s/$re_match/$replace/")
 mv $src $tgt
 done

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 18

13. When something goes wrong (debugging)

13.1 Ways Calling BASH

A nice thing to do is to add on the first line

 #!/bin/bash -x

This will produce some intresting output information

14. About the document

Feel free to make suggestions/corrections, or whatever you think it would be interesting to see in this
document. I'll try to update it as soon as I can.

14.1 (no) warranty

This documents comes with no warranty of any kind. and all that

14.2 Translations

Italian: by William Ghelfi (wizzy at tiscalinet.it) is here

French: by Laurent Martelli is missed

Korean: Minseok Park http://kldp.org

Korean: Chun Hye Jin unknown

Spanish: unknow http://www.insflug.org

I guess there are more translations, but I don't have any info of them, if you have it, please, mail it to me so I
update this section.

14.3 Thanks to

People who translated this document to other languages (previous section).•
Nathan Hurst for sending a lot of corrections.•
Jon Abbott for sending comments about evaluating arithmetic expressions.•
Felix Hudson for writing the renna script•
Kees van den Broek (for sending many corrections, re-writting useful commands section)•
Mike (pink) made some suggestions about locating bash and testing files•
Fiesh make a nice suggestion for the loops section.•
Lion suggested to mention a common error (./hello.sh: Command not found.)•
Andreas Beck made several corrections and comments.•

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 19

14.4 History

New translations included and minor corrections.

Added the section useful commands re-writen by Kess.

More corrections and suggestions incorporated.

Samples added on string comparison.

v0.8 droped the versioning, I guess the date is enough.

v0.7 More corrections and some old TO-DO sections written.

v0.6 Minor corrections.

v0.5 Added the redirection section.

v0.4 disappeared from its location due to my ex-boss and this doc found its new place at the proper url:
www.linuxdoc.org.

prior: I don't rememeber and I didn't use rcs nor cvs :(

14.5 More resources

Introduction to bash (under BE) http://org.laol.net/lamug/beforever/bashtut.htm Link defunct, but here's a link
from the Wayback Machine

Bourne Shell Programming http://207.213.123.70/book/

BASH Programming - Introduction HOW-TO

BASH Programming - Introduction HOW-TO 20

	Table of Contents
	BASH Programming - Introduction HOW-TO
	by Mike G mikkey at dynamo.com.ar
	1. Introduction
	1.1 Getting the latest version
	1.2 Requisites
	1.3 Uses of this document
	2. Very simple Scripts
	2.1 Traditional hello world script
	2.2 A very simple backup script
	3. All about redirection
	3.1 Theory and quick reference
	3.2 Sample: stdout 2 file
	3.3 Sample: stderr 2 file
	3.4 Sample: stdout 2 stderr
	3.5 Sample: stderr 2 stdout
	3.6 Sample: stderr and stdout 2 file
	4. Pipes
	4.1 What they are and why you'll want to use them
	4.2 Sample: simple pipe with sed
	4.3 Sample: an alternative to ls -l *.txt
	5. Variables
	5.1 Sample: Hello World! using variables
	5.2 Sample: A very simple backup script (little bit better)
	5.3 Local variables
	6. Conditionals
	6.1 Dry Theory
	6.2 Sample: Basic conditional example if .. then
	6.3 Sample: Basic conditional example if .. then ... else
	6.4 Sample: Conditionals with variables
	7. Loops for, while and until
	7.1 For sample
	7.2 C-like for
	7.3 While sample
	7.4 Until sample
	8. Functions
	8.1 Functions sample
	8.2 Functions with parameters sample
	9. User interfaces
	9.1 Using select to make simple menus
	9.2 Using the command line
	10. Misc
	10.1 Reading user input with read
	10.2 Arithmetic evaluation
	10.3 Finding bash
	10.4 Getting the return value of a program
	10.5 Capturing a commands output
	10.6 Multiple source files
	11. Tables
	11.1 String comparison operators
	11.2 String comparison examples
	11.3 Arithmetic operators
	11.4 Arithmetic relational operators
	11.5 Useful commands
	12. More Scripts
	12.1 Applying a command to all files in a directory.
	12.2 Sample: A very simple backup script (little bit better)
	12.3 File re-namer
	12.4 File renamer (simple)
	13. When something goes wrong (debugging)
	13.1 Ways Calling BASH
	14. About the document
	14.1 (no) warranty
	14.2 Translations
	14.3 Thanks to
	14.4 History
	14.5 More resources

