
1

Designing Integrated High
Quality Linux Applications

Avi Alkalay, IBM Linux Impact Team :: ibm.com/lin-
ux [http://ibm.com/linux] <avi at br.ibm.com>

Copyright © 2002 Avi Alkalay

v2.1, 2002-08-24

Revision History
Revision 2.1 24 Aug 2002 avi

Rewrite of the /opt /usr/local section. Cosmetics on graphical user in-
terface and plugins sections. Fixed screens and programlistings width.

Revision 2.0 07 May 2002 avi
Final XML conversion. Files reorganization.

Revision 1.9.9 20 Apr 2002 avi
Included other document locations.

Revision 1.98 14 Apr 2002 avi
Title changed from "Creating" to "Designing".

Revision 1.97 09 Apr 2002 avi
Converted to XML 4.1.2, and started to use real XSLT. Spell checked the english version.

Revision 1.96 23 Mar 2002 avi
Better HTML style sheets.

Revision 1.95 17 Mar 2002 avi
Last chapter: One Body, Many Souls. Created appen-
dix. Still have to translate some words here and there.

Revision 1.9 16 Mar 2002 avi
Added universal software table with FHS.

Revision 1.7 16 Mar 2002 avi
Everything is now translated except some words.

Revision 1.3 27 Feb 2002 avi
Translated and reviewed the most important section of the article: The /opt and /usr/local section.

Revision 1.2 23 Feb 2002 avi
English translation at 65%. Doing some corrections to potuguese version also.

Revision 1.1 17 Feb 2002 avi
Started english translation.

Revision 1.0 16 Feb 2002 avi
First final version of proposed skeleton.

Revision 0.9.6 16 Feb 2002 avi
Finished Plugin chapter.

Revision 0.9.5 15 Feb 2002 avi
Finished chapter about boot and subsystems.

Revision 0.9.4 14 Feb 2002 avi
Finished chapter describing the boot process.

Revision 0.9.3 08 Feb 2002 avi
Text and style updates.

Revision 0.9.2 07 Feb 2002 avi
Text updates.

Revision 0.9 06 Feb 2002 avi

http://ibm.com/linux
http://ibm.com/linux
http://ibm.com/linux

Designing Integrated High
Quality Linux Applications

2

First translation to DocBook.

Table of Contents
Introduction .. 2
User Friendly: Guaranteed Success .. 2

Embrace the Install-and-Use Paradigm ... 3
The Four Universal Parts of Any Software .. 3

Practical Examples .. 4
The Importance of Clear Separation Between Four Parts .. 5
One Body, Many Souls .. 7

Linux Directory Hierarchy: Oriented to the Software Parts ... 8
FHS Summary .. 8
Examples Using the FHS ... 9
Developer, Do Not Install in /opt or /usr/local ! .. 10

Provide Architecture for Extensions and Plugins ... 11
Abstracting About Plugins .. 12

Allways Provide RPM Packages of Your Softwares .. 12
Software Package Modularization ... 12

Security: The Omnipresent Concept .. 13
Graphical User Interface ... 13

KDE, GNOME, Java or Motif? .. 13
Web Interface: Access from Anywhere ... 14
Wizards and Graphical Installers .. 14

Starting Your Software Automatically on Boot ... 14
From BIOS to Subsystems .. 14
Runlevels ... 15
The Subsystems .. 16
Turning Your Software Into a Subsystem .. 17
Packaging Your Boot Script .. 19

A. Red Hat, About the Filesystem Structure ... 19
B. About this Document ... 20

Introduction
Linux is becoming more and more popular, and many Software vendors are porting their products from
other platformas. This document (article) tries to clarify some issues and give tips on how to create Linux
applications highly integrated to the Operating System, security and easy of use.

The examples run on Red Hat [http://www.redhat.com/] Linux, and should be compatible with
other distributions based on Red Hat (Conectiva [http://www.conectiva.com.br/], Turbolinux [http://
www.turbolinux.com/], Caldera [http://www.calderasys.com/], PLD [http://www.pld.org.pl/], Mandrake
[http://www.mandrakelinux.com/], etc).

User Friendly: Guaranteed Success
The user-friendly concept is missassociated with a good GUI (graphical user interface). In fact, it is much
more than that. In systems like Linux (with more server-like characteristics), the user measures how easy a
Software is, mainly in the installation and initial configuration. He can even forget how easy were to install
and use a certain product, but it will never forget that a Software package has a complex configuration and
installation process. A migration or new installation allways will be a nightmare, making the user avoid it.

http://www.redhat.com/
http://www.redhat.com/
http://www.conectiva.com.br/
http://www.conectiva.com.br/
http://www.turbolinux.com/
http://www.turbolinux.com/
http://www.turbolinux.com/
http://www.calderasys.com/
http://www.calderasys.com/
http://www.pld.org.pl/
http://www.pld.org.pl/
http://www.mandrakelinux.com/
http://www.mandrakelinux.com/

Designing Integrated High
Quality Linux Applications

3

Embrace the Install-and-Use Paradigm
Imagine you'll install that expansive product your company bought from ACME, and realized you'll have
to do the following:

1. To have a manual that shows the installation process step-by-step. We know that a manual is the last
thing the user reads

2. Read some README files

3. Uncompress huge files in your disk (after downloading them from net our CD), to create the installation
environment

4. Read more README files that appeared in the installation environment

5. Comprehend that the installation requires you to execute in a special way some provided script (the
inconvenient ./install.sh)

6. Uncomfortably answer some questions that the script does, like target directory, user for the installation,
etc. To make it worse, it frequently happens in a terminal that has a missconfigured backspace

7. After the installation, configure some environment variables in your profile, like $PATH, $LIBPATH,
$ACMEPROGRAM_DATA_DIR, $ACMEPROGRAM_BIN_DIR, etc

8. Edit OS files to include the presence of the new product (e.g. /etc/inetd.conf, /etc/inittab)

9. And the worse: Change security permissions of OS directories and files to let the product run OK

Sounds familiar? Who never faced this sad situation, that inducts the user to make mistakes? If your
products' installation process sound like Uncompress-Copy-Configure-ConfigureMore-Use, like this one,
you have a problem, and the user won't like it.

Users like to feel that your Product integrates well with the OS. You should not demand that the OS adapt
himself to your Product (changing environment variables, etc). It must let the user Install-and-Use.

The Install-And-Use glory is easily achieved using a 3 ingredients receipt:

1. Understanding the Four Universal Parts of Any Software

2. Understanding how they are related to Linux's directory hierarchy

3. Aggressively use a package system, for process automation and leverage first items. In our case is RPM.

We'll discuss here what are these ingredients and how to implement them.

The Four Universal Parts of Any Software
The file set of any Application Software, graphical, server-side, commercial, open/free, monolithic etc,
has allways four universal parts:

1st :: The Software on its own: the body
The executables, libraries, static-data files, examples, manuals and documentation, etc. Regular users must
have read-only access to these files. They are changed only when the system administrator makes an
upgrade in this Software.

Designing Integrated High
Quality Linux Applications

4

2nd :: Configuration Files: the soul
These are files that define how the Software will run, how to use the Content, security, performance etc.
Without them, the Software on its own is usually useless.

Depending on your Software, specific privileged users may change these files, to make the Software behave
as they want.

It is important to provide documentation about the configuration files.

3rd :: Content
Is what receives all the user attention. Is what the user delegated to be managed by your Product. Is what
makes a user throw away your product and use the competitors', if it gets damaged.

Are the tables of a database system, the documents for a text editor, the images and HTML pages of a
web-server, the servlets and EJBs of an Application Server, etc.

4th :: Logs, Dumps etc
Server Software use to generate access logs, trace files problem determination, temporary files etc. Other
types of softwares also use this files, but it is less common.

It is the last class of file, but many times they are the most problem generator for a system administrator,
because their volume can surpass even the content size. Due this fact, it is important for you to think in
some methodology or facility for this issue, while you are in design time.

Practical Examples
Let's see how universal is this concept analyzing some types of softwares:

Table 1. Universality of 4 Parts

Software on its Own Configurations Content Logs, Dumps etc

Data Base Server Binaries, libraries,
documentations.

Files that define the
directory of the da-
ta files. For this
type of Software, the
remaining configura-
tions usually are in
special tables inside
the database.

Table files, index
files, etc. This soft-
ware use to have
whole trees under
the same directory.
And many times they
need several filesys-
tems to guarantee per-
formance. Their local
in the system is de-
fined by they Config-
urations.

For DBs, there are the
backup, generated in
a daily basis. And the
logs are used by the
DBA to define index-
ing strategy. His local
on the system is also
defined by the Config-
urations.

Text Processor The same, templates,
modular file format
filters, etc

As a user-oriented
Software, its configu-
rations must be put in
each user's $HOME di-

The documents gener-
ated by the user, and
they go some place in
his $HOME

They show as tem-
porary files that can
be huge. User can de-
fine their location with

Designing Integrated High
Quality Linux Applications

5

Software on its Own Configurations Content Logs, Dumps etc

rectory, and are files
that defines standard
fonts and tabulation,
etc.

a user-friendly dialog
(that saves it in some
Configuration file)

MP3 generator Same, audio modular
filters

Each user has a con-
figuration file in his
$HOME, and contains
bitrate preferences etc

Similar to Text Editor Similar to Text Editor

Web Server Similar to Data Base Files that define
the Content directory,
network and perfor-
mance parameters, se-
curity, etc

Directories where the
webmaster deposits
his creativity. Again
defined by the Config-
urations

Preciouses access
logs, vital for Market-
ing Intelligence, that
are generated in a lo-
cation and format de-
fined by Configura-
tions

e-Mail Server Similar to Database
and Web-Server

Files that define how
to access user data-
base, mail routing
rules, etc

The preciouses users
mail boxes. Again de-
fined by the Configu-
rations

Mail transfer log,
virus detection log,
etc. Again defined by
the Configurations

Pay attention that the Software on its Own contains all your product business logic, which could be useless
if you hadn't a Configuration to define how to work with a data bundle, provided by the user. So, Config-
urations are what connects your product to the user.

We can use a metaphor about a Sculptor (business logic), that needs Bronze (content) and a Theme or
Inspiration (configuration) from a Mecenas (user), to produce a beautiful work (content). He make anno-
tations in his Journal (logs) about his day-by-day activities, to report to his Mecenas (user).

The Importance of Clear Separation Between Four Parts
OK, so let's be more practical. The fact is, if we correctly use the universal parts concept, we greatly
improve the quality of our Product. We'll do that simply separating, encapsulating, each one of these
parts in different system directories (having only different files for each part is not sufficient). There is a
standard called FHS [http://www.pathname.com/fhs/] that defines the Linux directories for each part, and
we'll discuss it later in the section called “Linux Directory Hierarchy: Oriented to the Software Parts”.

By now let's see the value of this separation to the user:

1. He gains a clear vision about where is each part, specially his Configurations and Content, and he
feels your Product as something completely under control. The clareza brings ease of use, security and
confidence in your Product. And in practice it permits him manipulate each part independently

2. It is clear now that, for instance, when backing up, user action is needed only for Configurations and
Content (the puritans will also backup some logs). The user don't have to care about Software on its
Own, because it is safe, original, on the product CD, in his shelf.

3. For upgrades, the new package will overwrite only the business logic, leaving intact the user's precious
Configurations and Content. Here is very important to keep old content and configuration compatible,
or to provide some tools help migration of data

4. The logs being kept in a separate filesystem (obviously suggested in your documentation), avoids that
their exaggerated growth interfere with the Content, or with the stability of the whole system

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Designing Integrated High
Quality Linux Applications

6

5. If your Software follows some directory standards, the user don't have to reconfigure his system or
environment to use it. He will simply Install-and-Use.

Let's make some exercise with separation using as example a system called MySoftware, in which the
business logic is in Example 1, “A Shell program referring an external configuration file” and the config-
uration is in Example 2, “File containing only the configurations for MySoftware”.

Example 1. A Shell program referring an external configuration file

#!/bin/sh

###
##
/usr/bin/MySoftware
##
Business logic of MyProgram system.
Do not change nothing in this file. All configuration can be
made on /etc/MySoftware.conf
##
We'll not support any modifications made here.
##

Default configuration file
CONF=/etc/MySoftware.conf

Minimal content directories
MIN_CONTENT_PATH=/var/www:/var/MySoftware/www

if [-r "$CONF"]; then
 . "$CONF"
fi

All the content I'll serve are the "minimal" plus the ones provided
by the user in the configuration file $CONF
CONTENT_PATH=$MIN_CONTENT_PATH:$CONF_CONTENT_PATH

.

.

.

Definition of the configuration file name.
Definition of some static parameters.
The configuration is readed from an external file, if exists.
After reading the configuration file, all content directories -- user's + product's -- goes together in the
$CONTENT_PATH, that will be used from now on.

Example 2. File containing only the configurations for MySoftware

###
##
/etc/MySoftware.conf
##

Designing Integrated High
Quality Linux Applications

7

Configuration parameters for MySoftware.
Change as much as you want.
##

Content directory.
A ':' separated list of directories for your content.
The directories /var/www and /var/MySofware are already there, so
include here your special directories, if any.
CONF_CONTENT_PATH=/var/NewInstance:/var/NewInstance2

Your e-mail address, for notifications.
EMAIL=john@mycompany.com

Logs directory
LOG_DIR=/var/log/myInstance

These are user defined parameters.

One Body, Many Souls
When I was a system administrator for IBM e-business Hosting Services, I was fascinated by Apache
[http://httpd.apache.org/]'s flexibility letting us do things like this:

bash# /usr/sbin/httpd &
bash# /usr/sbin/httpd -f /etc/httpd/dom1.com.br.conf &
bash# /usr/sbin/httpd -f /etc/httpd/dom2.com.br.conf &
bash# /usr/sbin/httpd -f /etc/httpd/dom3.com.br.conf &

If we don't pass any parameter (like the first example), Apache loads its default, hardcoded configuration
file from /etc/httpd/conf/httpd.conf. We built other configs, one for each customer, with a
completely different structure, IP address, loaded modules, content directory, passwords, domains, log
strategy etc.

This same concept is used by a text editor of a multiuser desktop (like Linux). When the code is loaded, it
looks for a configuration file on the user's $HOME, and depending who invoked him (user A or B), it will
appear differently because each user has its own personal configuration.

The obvious conclusion is that the Software's body (business logic) is pure e completely oriented by his
manipulator's spirit (configuration). But the competitive advantage lays on how easy we switch from one
spirit to another, like in Apache's example. It is very healthy to promote it to your user. You'll be letting
him create intimacy, reliability, confort with your Product.

We used this approach with many different Softwares in that e-business Hosting time, and it was extremely
usefull for maintenance etc. In a version migration we had total control over where were each of its parts,
and upgraded and downgraded Software with no waste of time, with obvious success.

But there were some Products that refused to work this way. They had so many hardcoded parameters,
that we couldn't see what divided the body from their spirit (or other parts). These Softwares were marked
as bad guys and discarded/replaced as soon as possible.

We concluded that the good guys Softwares were intuitively blessed by their developer's four parts vision.
And they made our life easyer. In fact, in that time we formulated this theory, that continues to prove itself.

Do you want to deploy bad guy or good guy Software?

http://httpd.apache.org/
http://httpd.apache.org/

Designing Integrated High
Quality Linux Applications

8

Linux Directory Hierarchy: Oriented to the Soft-
ware Parts

By now, all discussion are OS independent. On Linux, the Four Software Parts theory is expressed in
his directory structure, which is classified and documented in the Filesystem Hierarchy Standard [http://
www.pathname.com/fhs/]. The FHS is part of the LSB (Linux Standard Base) [http://www.linuxbase.org/
], which makes him a good thing because all the industry is moving thowards it, and is a constant preoccu-
pation to all distributions. FHS defines in which directories each peace of Apache, Samba, Mozilla, KDE
and your Software must go, and you don't have any other reason to not use it while thinking in developing
your Software, but I'll give you some more:

1. FHS is a standard, and we can't live without standards

2. This is the most basic OS organization, that are related to access levels and security, where users
intuitively find each type of file, etc

3. Makes user's life easyer

This last reason already justifies FHS adoption, so allways use the FHS !!!

More about FHS importance and sharing the same directory structure can be found in Red Hat website.
[http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html]

FHS Summary
So let's summarize what the FHS has to say about Linux directories:

Linux system directories

/usr/bin Directory for the executables that are accessed by all users (everybody have this
directory in their $PATH). The main files of your Software will probably be
here. You should never create a subdirectory under this folder.

/bin Like /usr/bin, but here you'll find only boot process vital executables, that
are simple and small. Your Software (being high-level) probably doesn't have
nothing to install here.

/usr/sbin Like /usr/bin, but contains only the executables that must be accessed by
the administrator (root user). Regular users should never have this directory in
their $PATH. If your Software is a daemon, This is the directory for some of
executables.

/sbin Like /usr/sbin, but only for the boot process vital executables, and that will
be accessed by sysadmin for some system maintaining. Commands like fsck
(filesystem check), init (father of all processes), ifconfig (network configura-
tion), mount, etc can be found here. It is the system's most vital directory.

/usr/lib Contains dynamic libraries and support static files for the executables at /
usr/bin and /usr/sbin. You can create a subdirectory like /usr/lib/
myproduct to contain your helper files, or dynamic libraries that will be ac-
cessed only by your Software, without user intervention. A subdirectory here
can be used as a container for plugins and extensions.

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.linuxbase.org/
http://www.linuxbase.org/
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html

Designing Integrated High
Quality Linux Applications

9

/lib Like /usr/lib but contains dynamic libraries and support static files needed
in the boot process. You'll never find an executable at /bin or /sbin that
needs a library that is outside this directory. Kernel modules (device drivers)
are under /lib.

/etc Contains configuration files. If your Software uses several files, put them under
a subfolder like /etc/myproduct/

/var The name comes from "variable", because everything that is under this direc-
tory changes frequently, and the package system (RPM) doesn't keep control
of. Usually /var is mounted over a separate high-performance partition. In /
var/log logfiles grow up. For web content we use /var/www, and so on.

/home Contains the user's (real human beings) home directories. Your Software pack-
age should never install files here (in installation time). If your business logic
requires a special UNIX user (not a human being) to be created, you should
assign him a home directory under /var or other place outside /home. Please,
never forget that.

/usr/share/doc, /
usr/share/man

The "share" word is used because what is under /usr/share is platform in-
dependent, and can be shared among several machines across a network filesys-
tem. Therefore this is the place for manuals, documentations, examples etc.

/usr/local, /opt These are obsolete folders. When UNIX didn't have a package system (like
RPM), sysadmins needed to separate an optional (or local) Software from the
main OS. These were the directories used for that.

You may think is a bad idea to break your Software (as a whole) in many pieces, instead of keeping it all
under a self-contained directory. But a package system (RPM) has a database that manages it all for you in
a very professional way, taking care of configuration files, directories etc. And if you spread your Software
using the FHS, beyond the user friendliness, you'll bring an intuitive way to the sysadmin configure it, and
work better with performance and security.

Examples Using the FHS
Now that we know where each part of our software must be installed, lets review the Universal Parts Table
applied to the FHS.

Table 2. Same Software, applying FHS

Software on its Own Configurations Content Logs, Dumps etc

Data Base Server /usr/bin/, /
usr/lib/, /usr/
share/doc/
mydb/, /usr/
share/doc/
mydb/examples/

/etc/mydb/ /var/db/
instance1/, /
var/db/
instance2/, etc

/var/db/
in-
stance1/trans-
actions/, /var/
log/db/
ac-
cess-instance1.log,
/var/log/db/
ac-
cess-instance2.log

Text Editor /usr/bin/, /usr/
lib/, /usr/lib/
myeditor/plug-
ins/, /usr/

$HOME/.myeditor.conf$HOME/Docs/ $HOME/.myeditor-
tmp/

Designing Integrated High
Quality Linux Applications

10

Software on its Own Configurations Content Logs, Dumps etc

share/
myeditor/tem-
plates/, /usr/
share/doc/
myeditor/

MP3 Generator /usr/bin/, /usr/
lib/, /usr/lib/
mymp3/plugins/,
/usr/share/
doc/mymp3/

$HOME/.mymp3.conf$HOME/Music/ $HOME/.mymp3-
tmp/

Web Server /usr/sbin/, /
usr/bin/, /usr/
lib/httpd-
modules/, /usr/
share/doc/
httpd/, /usr/
share/doc/
httpd/
examples/

/etc/httpd/, /
etc/httpd/
instance1/, /
etc/httpd/
instance2/

/var/www/, /var/
www/instance1/,
/var/www/
instance2/

/var/logs/
httpd/, /var/
logs/httpd/
instance1/, /
var/logs/
httpd/
instance2/

E-Mail Server /usr/sbin/, /
usr/bin/, /usr/
lib/, /usr/
share/doc/
mymail/

/etc/mail/, /
etc/
mailserver.cf

/var/mail/ /var/spool/
mailqueue/, /
var/logs/
mail.log

Developer, Do Not Install in /opt or /usr/local !
If you are a systems administrator, this section is not for you. This is a subject for developers and packagers,
to make sysadmin's life easyer.

The /opt and /usr/local directories are used by sysadmins to manualy non-packaged files (without
RPM) of a software, precisely to not loose control over those files. Notice how separated this folder are
from the rest of the system.

A manual installation process (without RPM, or based on simple file copy) is documented in forgoten
document inside a drawer (if it was documented), and inside the head of who made installation. If he moves
to another job, that installations becomes obscure to the rest of the team, and is a time bomb.

With RPM is different. RPM (or any other package system) is an installation "process" by itself. It is self-
documented in his database and pre and post-install actions, which permits total control. Turns installations
independent from who did it, turning installtions in a business process.

Installations based on coping files into /opt or /usr/local are far from providing the organization,
system visibility and control that RPM provides. I can say /opt and /usr/local would be obsoleted
when all softwares become RPMized.

It is very important to Linux evolution and popularization (especially in the desktop battlefield), that de-
velopers stop using this hell directories, and start using the FHS. After reading this section, if you still
think this folders are good business, please drop me an e-mail.

Products that are entirely installed under one directory, use the self-contained approach, that has several
problems:

Designing Integrated High
Quality Linux Applications

11

1. Forces the user to change environment variables like $PATH and $LD_LIBRARY_PATH to use your
product easily.

2. Puts files in non-standard places, complicating system integration, and future installation of extensions
to your product.

3. The sysadmin probably didn't prepared disk space in these partitions, generating problems in installation
time.

4. It is an accepted approach only for pure graphical application, without the command line concept. This
is why it were well accepted in Windows. But...

5. ...even using this approach, you can't avoid installing or changing files in standard locations to, for
instance, make your icons appear in the user desktop.

Many developers believe that the "self-contained" approach let them work with several versions of the
same product, for testing purposes, or whatever. Yes, agree, with this or any good reason in the planet. But
remember that a High Quality Software (or Commercial Grade Software) objective is to be practical for
the final user, and not to be easy to their developers and testers. Invite yourself to visit an unexperienced
user (but potential customer) and watch him installing your product.

Developer, don't be afraid of spreading your files according to FHS because RPM will keep an eye on them.

If you have a business reason to let the user work with several versions of your Product simultaneous-
ly (or any other reason), make a relocatable package [http://www.rpm.org/max-rpm/ch-rpm-reloc.html],
which is described in the Maximum RPM [http://www.rpm.org/max-rpm/] book. Be also aware about the
implications of using this feature, described in the same book [http://www.rpm.org/max-rpm/s1-rpm-re-
loc-wrinkles.html].

Red Hat and derivated distributions allways use the directory standard, instead of /opt or /usr/local.
Read what Red Hat says about this subject, and think about it.

Note

The Makefiles of an OpenSource Software that is portable to other UNICES must have the stan-
dard installation in /usr/local for compatibility reasons. But must also give the option, and
induct the packager, to create the package using FHS specifications.

Provide Architecture for Extensions and Plug-
ins

You'll probably let other Software vendors plug extensions to your product. Since you are the author of
the initial Software, is your responsability to organize it in such a way that the user can simply install
the extension RPM and use it, without forcing him modify any configuration file. It is again the famous
Install-and-Use that guarantees ease-of-use.

Well, and extension is nothing more that some files in a right format (DLLs that implements the API your
Software defined), put in the right folders (directories your Software looks for extensions).

We can see many applications requesting the user to change configuration files to "declare" the presence
of a new plugin. This is a bad approach that must be avoided because makes user's or plugin provider's
life harder.

The most important thing to consider in your plugin architecture is to not share files between plugins
and your Software. You should provide an architecture where plugins will be able to fully install and

http://www.rpm.org/max-rpm/ch-rpm-reloc.html
http://www.rpm.org/max-rpm/ch-rpm-reloc.html
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/s1-rpm-reloc-wrinkles.html
http://www.rpm.org/max-rpm/s1-rpm-reloc-wrinkles.html
http://www.rpm.org/max-rpm/s1-rpm-reloc-wrinkles.html

Designing Integrated High
Quality Linux Applications

12

uninstall themselves by simply putting and removing files in specific directories, documented in you Soft-
ware. Good candidates are /usr/lib/myproduct/plugins as the plugins directory, and /etc/
myproduct/plugins as the plugins configuration files directory. Your Software and plugins must be
sufficient intelligent to know how to find files, specially configurations, in these directories.

Using this approach, no post-install procedures is required from the user, and from the plugin provider.

Abstracting About Plugins
I would like to close this subject inviting the reader a se abstratir and think about any Software can be
treated as an extension to the lower level Software. In the same way a third party plugin is an extension to
your Software, your Software is also an extension to the OS (lower level). This is where all the Integration
(from the title of this document) magic lives. So we can apply all the ease-of-use concepts we discussed
before to the plugin architecture design of your Software.

Allways Provide RPM Packages of Your Soft-
wares

This is extremely important for many reasons:

1. Ease-of-use. This is allways the primordial motivation.

2. Automates some tasks that must be made before and after the installation of your Software. Again
bringing ease-of-use.

3. Intelligently manages configuration files, documentation etc, providing more control in an upgrade

4. Manages interdependencies with other packages and versions, guaranteeing good functionality.

5. Lets you distribute Software with your company's digital signature, and makes integrity checks (MD5)
in each file, guaranteeing precedence, and reporting unwanted file modification.

6. Provides tools to let interact with your graphic installer.

But a good package is not only put together your files in a RPM. FHS must be followed, configuration and
documentation files must be marked as is, and pre- and post-install scripts must be robust, to not let them
damage the system (remember that installation processes is done by root).

Know well RPM because it can bring much power and facilities to you and your user. There are a lot of
documentation available about RPM on the Internet:

• The book Maximum RPM [http://www.redhat.com/docs/books/max-rpm/], also available on-
line [http://www.rpm.org/max-rpm/] and in printable PostScript [http://www.rpm.org/local/maxi-
mum-rpm.ps.gz] format.

• RPM-HOWTO [http://www.rpm.org/RPM-HOWTO/] which is smaller and more straight-forward.
• www.rpm.org [http://www.rpm.org/]

Software Package Modularization
You should give user the option to install only the part of your Software he wants. Imagine your Software
has a client part and a server part, and both use files and libraries in common. You should break them in
3 RPMs. For instance, lets say the name of your product is MyDB, so you'll provide the packages:

1. MyDB-common-1.0-3.i386.rpm

http://www.redhat.com/docs/books/max-rpm/
http://www.redhat.com/docs/books/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/local/maximum-rpm.ps.gz
http://www.rpm.org/local/maximum-rpm.ps.gz
http://www.rpm.org/local/maximum-rpm.ps.gz
http://www.rpm.org/RPM-HOWTO/
http://www.rpm.org/RPM-HOWTO/
http://www.rpm.org/
http://www.rpm.org/

Designing Integrated High
Quality Linux Applications

13

2. MyDB-server-1.0-3.i386.rpm

3. MyDB-client-1.0-3.i386.rpm

and last 2 packages depends on the first. If the user is installing a client profile, he will use:

1. MyDB-common-1.0-3.i386.rpm

2. MyDB-client-1.0-3.i386.rpm

If he is installing a server profile:

1. MyDB-common-1.0-3.i386.rpm

2. MyDB-server-1.0-3.i386.rpm

This approach will help the user save disk space, and be aware of how your Software is organized.

Security: The Omnipresent Concept
From a very general perspective, security is synonym of order, conscience. And insecure is everything that
makes a system stop without the user wish. So besides open network ports, or weak cryptography (that
are beyond the scope of this document), applications that inducts the user to use it only as root, or make
him change files in inappropriate places, is considered insecure. We can say the same for the apps that
fills a filesystem that is vital to the OS.

Many standards appeared from good practices discussed and developed in conjunction for a long time.
So you should know and use them when you'll package your software, because they are key for you to
achieve a good organization (security) level.

Graphical User Interface
Everybody loves graphical interfaces. Many times they make our life easyer, and this way helps to pop-
ularize a Software, because the learning curve get smaller. But for the everyday use, a command with
many options and a good manual becomes much more practical, making scripts easy, remote access, etc.
So the suggestion is, whenever is possible, to provide both interfaces: graphical for the beginners, and the
powerfull command line for the expert.

KDE, GNOME, Java or Motif?
Better then a simple graphical interface is a consistent integrated desktop. So developer, please do not
reinvent the wheel using proprietary libraries. Today's Linux desktop is full-featured, complete APIs that
makes your life easier.

The desktops today in Linuxland are KDE and GNOME. Try to allways use one of them, or both.

KDE [http://www.kde.org/] is the most outstanding, offering a true consistent desktop, flexible, with an
extremely elegant architecture, using components (like Microsoft's COM and COM+), intercommunica-
tion, performance etc. It is constantly evolving, and is developed in C++. Its applications have an familiar
integrated look-and-feel, is light and mature. People say that KDE 3 is shiny diamond, ready to be used,
and is my first suggestion to you.

GNOME [http://www.gnome.org/] also brings the integrated desktop proposal, but it is far from the ma-
turity and ease-of-use of KDE. From the other side, is very well supported by the comunity, and good
improvements are appearing.

http://www.kde.org/
http://www.kde.org/
http://www.gnome.org/
http://www.gnome.org/

Designing Integrated High
Quality Linux Applications

14

Motif isn't an integrated desktop. It is a widgets library (button, scrollbar etc), plus a window-manager.
It was born commercial, is mature and popular in commercial applications. But is considered obsolete in
front of KDE and GNOME, that integrates the desktop. Motif source code was opened by the OpenGroup
[http://www.opengroup.org/] and because that was renamed to OpenMotif [http://www.openmotif.org/].

Java [http://java.sun.com/] is being used more and more for graphical interfaces, specially in server Soft-
ware, where the graphics are only helpers to configuration and administration.

Web Interface: Access from Anywhere
Nowadays every desktop has a browser, and if your Product is a server application, the Web Interface
is the right choice, because it lets a user administer it from anywhere. But keep in mind the security
and organization of your CGIs, because they use to be front doors for crackers. Web interface (CGI) is
completely different programming paradigm. Try to understand it conceptually first, starting from "how a
web-server works", "what is a URL", etc, to get on this without compromising your Product's security.

Wizards and Graphical Installers
Specially for a commercial Product, your Software must provide a graphical installer. Believe me, they
are impressive in a demonstration, and CIOs love them.

More then just installation, a wizard helps in the initial configuration of your Product, collects info like
activation key etc, and shows the developer license.

A wizard should not do more than this:

1. Ask which modules to install, experienced by the user as checkboxes.

2. Get the necessary info to build an initial configuration (the soul) for the Software.

3. Install the selected modules, that are in fact RPM files. Each checkbox must represent one or more
RPMs, because each RPM is a indivisible (atomic) portion of a Software.

4. After RPMs installation, change the configuration (soul) files (marked this way in the RPMs), or create
some content, based on the data the user gave to the wizard.

So the wizard hides the RPM installation and writes initial personalization. RPM is still responsable for
putting all your software files in the correct places. This role should never be of your installer. Think that
an experienced user (there are a lot of them in the Linux world) should be able to reproduce your Product
installation without the graphical help, using only RPM commands. In fact, in big data centers, where
people make mass installations, a graphical installer only disturbs.

RPM provides tools that help your graphical installer interact with them, like installation percentage view-
er. Documentation for use are allways in the RPM manual (man rpm) and in the Maximum RPM [http://
www.rpm.org/max-rpm/] book.

Starting Your Software Automatically on Boot
The way Linux starts (and stops) all its subsystems is very simple and modular. Lets you define initializa-
tion order, runlevels etc

From BIOS to Subsystems
Lets review what happens when we boot Linux:

http://www.opengroup.org/
http://www.opengroup.org/
http://www.openmotif.org/
http://www.openmotif.org/
http://java.sun.com/
http://java.sun.com/
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/

Designing Integrated High
Quality Linux Applications

15

1. The BIOS or a bootloader (lilo, zlilo, grub, etc) loads Linux Kernel from disk to memory, with some
parameters defined in the bootloader configuration. We can see this process watching the dots that
appear in the screen. Kernel file stays in the /boot directory, and is accessed only at this moment.

2. In memory, Kernel code starts to run, detecting a series of vital devices, disk partitions etc.

3. On of the last things Kernel does is to mount the / (root) filesystem, that obrigatoriamente must contain
the /etc, /sbin, /bin and /lib directories.

4. Immediately behind, calls the program called init (/sbin/init) and passes the control to him.

5. The init command will read his configuration file (/etc/inittab) which defines the system run-
level, and some Shell scripts to be run.

6. These scripts will continue the setup of system's minimal infrastructure, mounting other filesystems
(according to /etc/fstab), activating swap space (virtual memory), etc.

7. The last step, and most interesting for you, is the execution of the special script called /etc/rc.d/
rc, which initializes the subsystems according to a directory structure under /etc/rc.d. The name
rc comes from run commands.

Runlevels
The runlevels mechanism lets Linux initialize itself in different ways. And also lets us change from one
profile (runlevel) to another without rebooting.

The default runlevel is defined in /etc/inittab with a line like this:

Example 3. Default runlevel (3, in this case) line in /etc/inittab

id:3:initdefault:

Runlevels are numbers from 0 to 6 and each one of them is used following this standard:

0 Halts the system. Turning to this runlevel, all subsystems are softly deactivated before the shutdown.
Don't use it in the initdefault line of /etc/inittab.

1 Mono-user mode. Only vital subsystems are initialized because it is used for system maintenance.
No user authentication (login) is required in this runlevel. A command line is directly returned to
the user.

3, 2 3 is used when a system is in full production. Take it as the runlevel your software will run. 2 is
historical and is like 3, but without NFS.

4 Not used. You can define it as you want, but is uncommon.

5 Like 3 plus a graphical login. It is ideal for a desktop workstation. Use 3 if the machine will be used
as a server, for security and performance reasons.

6 Like runlevel 0, but after complete stop, the machine is rebooted. Don't use it in the initdefault
line of /etc/inittab.

You can switch from one runlevel to another using the telinit command. And you can see the current
runlevel and the last one with the runlevel command. See bellow how we switched from runlevel 3 to 5.

bash# runlevel
N 3

Designing Integrated High
Quality Linux Applications

16

bash# telinit 5
bash# runlevel
3 5
bash#

The Subsystems
Subsystems examples are a web-server, data base server, OS network layer etc. We'll not consider a user
oriented application (like a text editor) as a subsystem.

Linux provides an elegant and modular way to organize the subsystems initialization. An important fact to
think is about subsystems interdependencies. For instance, it makes no sense to start a web-server before
basic networking subsystem is active.

Subsystems are organized under the /etc/init.d and /etc/rc.d/rcN.d directories:

/etc/init.d All installed Subsystems put in this directory a control program,
which is a script that follows a simple standard described bellow.
This is a simplified listing of this directory:

Example 4. Subsystems installed in /etc/init.d

bash:/etc/init.d# ls -l
-rwxr-xr-x 1 root root 9284 Aug 13 2001 functions
-rwxr-xr-x 1 root root 4984 Sep 5 00:18 halt
-rwxr-xr-x 1 root root 5528 Nov 5 09:44 firewall
-rwxr-xr-x 1 root root 1277 Sep 5 21:09 keytable
-rwxr-xr-x 1 root root 487 Jan 30 2001 killall
-rwxr-xr-x 1 root root 7958 Aug 15 17:20 network
-rwxr-xr-x 1 root root 1490 Sep 5 07:54 ntpd
-rwxr-xr-x 1 root root 2295 Jan 30 2001 rawdevices
-rwxr-xr-x 1 root root 1830 Aug 31 09:29 httpd
-rwxr-xr-x 1 root root 1311 Aug 15 14:18 syslog

/etc/rc.d/rcN.d (N is the
runlevel indicator)

These directories must contain only special symbolic links to the
scripts in /etc/init.d. This is how it looks:

Example 5. /etc/rc3.d listing

bash:/etc/rc3.d# ls -l
lrwxrwxrwx 1 root root 18 Jan 14 11:59 K92firewall -> ../init.d/firewall
lrwxrwxrwx 1 root root 17 Jan 14 11:59 S10network -> ../init.d/network
lrwxrwxrwx 1 root root 16 Jan 14 11:59 S12syslog -> ../init.d/syslog
lrwxrwxrwx 1 root root 18 Jan 14 11:59 S17keytable -> ../init.d/keytable
lrwxrwxrwx 1 root root 20 Jan 14 11:59 S56rawdevices -> ../init.d/rawdevices
lrwxrwxrwx 1 root root 16 Jan 14 11:59 S56xinetd -> ../init.d/xinetd
lrwxrwxrwx 1 root root 18 Jan 14 11:59 S75httpd -> ../init.d/httpd
lrwxrwxrwx 1 root root 11 Jan 13 21:45 S99local -> ../rc.local

Pay attention that all link names has a prefix starting with letter K
(from Kill, to deactivate) or S (from Start, to activate), and a 2 digit
number that defines the boot activation priority. In our example we

Designing Integrated High
Quality Linux Applications

17

have HTTPd (priority 75) starting after the Network (priority 10)
subsystem. And the Firewalling subsystem will be deactivated (K)
in this runlevel.

So to make your Software start automatically in the boot process, it must be a subsystem, and we'll
see how to do it in the following section.

Turning Your Software Into a Subsystem
Your Software's files will spread across the filesystems, but you'll want to provide a simple and consistent
interface to let the user at least start and stop it. Subsystems architecture promotes this ease-of-use, also
providing a way (non obrigatoria) to be automatically started on system initialization. You just have to
create your /etc/init.d script following a standard to make it functional.

Example 6. Skeleton of a Subsystem control program in /etc/init.d

#!/bin/sh
#
/etc/init.d/mysystem
Subsystem file for "MySystem" server
#
chkconfig: 2345 95 05
description: MySystem server daemon
#
processname: MySystem
config: /etc/MySystem/mySystem.conf
config: /etc/sysconfig/mySystem
pidfile: /var/run/MySystem.pid

source function library
. /etc/rc.d/init.d/functions

pull in sysconfig settings
[-f /etc/sysconfig/mySystem] && . /etc/sysconfig/mySystem

RETVAL=0
prog="MySystem"
.
.
.

start() {
 echo -n $"Starting $prog:"
 .
 .
 .
 RETVAL=$?
 ["$RETVAL" = 0] && touch /var/lock/subsys/$prog
 echo
}

stop() {
 echo -n $"Stopping $prog:"

Designing Integrated High
Quality Linux Applications

18

 .
 .
 .
 killproc $prog -TERM
 RETVAL=$?
 ["$RETVAL" = 0] && rm -f /var/lock/subsys/$prog
 echo
}

reload() {
 echo -n $"Reloading $prog:"
 killproc $prog -HUP
 RETVAL=$?
 echo
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 reload)
 reload
 ;;
 condrestart)
 if [-f /var/lock/subsys/$prog] ; then
 stop
 # avoid race
 sleep 3
 start
 fi
 ;;
 status)
 status $prog
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|reload|condrestart|status}"
 RETVAL=1
esac
exit $RETVAL

Although these are comments, they are used by chkconfig command and must be present. This
particular line defines that on runlevels 2,3,4 and 5, this subsystem will be activated with priority 95
(one of the lasts), and deactivated with priority 05 (one of the firsts).
Besides your Software's own configuration, this script can also have a configuration file. The standard
place for it is under /etc/sysconfig directory, and in our case we call it mySystem. This code
line reads this configuration file.

Designing Integrated High
Quality Linux Applications

19

Your script can have many functions, but it is obrigatorios the implementation of start and stop
methods, because they are responsible for (de)activation of your Subsystem on boot. Other methods
can be called from the command line, and you can define as much as you want.
After defining the script actions, the command line is analyzed and the requested method (action)
is called.
If this script is executed without any parameter, it will return a help message like this:

bash# /etc/init.d/mysystem
Usage: mysystem {start|stop|restart|reload|condrestart|status}
Here you put your Software's specific command.

The mysystem subsystem methods you implemented will be called by users with the service command
like this example:

Example 7. service command usage

bash# service mysystem start
Starting MySystem: [OK]
bash# service mysystem status
Subsysten MySystem is active with pid 1234
bash# service mysystem reload
Reloading MySystem: [OK]
bash# service mysystem stop
Stopping MySystem: [OK]
bash#

You don't have to worry about managing the symbolic links in /etc/rc.d/rcN.d. The chkconfig
command makes it for you, based on the control comments defined in the beginning of your script.

Example 8. Using the chkconfig command

bash# chkconfig --add mysystem
bash# chkconfig --del mysystem

Read the chkconfig manual page to see what more it can do for you.

Packaging Your Boot Script
When you'll create the RPM, put your Subsystem script in /etc/init.d and do not include any /
etc/rc.d/rcN.d link, because it is a user decision to make your subsystem automatic or not. If you
include them and the user makes any change, the RPM file inventory will become inconsistent.

The symbolic links must be created and removed dynamically by the post-installation and pre-uninstalla-
tion process of your package, using the chkconfig command. This approach guarantees 100% package
and filesystem consistency.

A. Red Hat, About the Filesystem Structure
This text was taken from The Official Red Hat Linux Reference Guide [http://www.redhat.com/docs/
manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html]

http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html

Designing Integrated High
Quality Linux Applications

20

Why Share a Common Structure?
An operating system's filesystem structure is its most basic level of organization. Almost all of the ways
an operating system interacts with its users, applications, and security model are dependent upon the way
it stores its files on a primary storage device (normally a hard disk drive). It is crucial for a variety of
reasons that users, as well as programs at the time of installation and beyond, be able to refer to a common
guideline to know where to read and write their binary, configuration, log, and other necessary files.

A filesystem can be seen in terms of two different logical categories of files:

1. Shareable vs. unsharable files

2. Variable vs. static files

Shareable files are those that can be accessed by various hosts; unsharable files are not available to any
other hosts. Variable files can change at any time without system administrator intervention (whether
active or passive); static files, such as documentation and binaries, do not change without an action from
the system administrator or an agent that the system administrator has placed in motion to accomplish
that task.

The reason for looking at files in this way has to do with the type of permissions given to the directory
that holds them. The way in which the operating system and its users need to utilize the files determines
the directory where those files should be placed, whether the directory is mounted read-only or read-write,
and the level of access allowed on each file. The top level of this organization (/ directory)is crucial, as
the access to the underlying directories can be restricted or security problems may manifest themselves if
the top level is left disorganized (security=organization) or without a widely-utilized structure.

However, simply having a structure does not mean very much unless it is a standard. Competing structures
can actually cause more problems than they fix. Because of this, Red Hat has chosen the most widely-used
filesystem structure and extended it only slightly to accommodate special files used within Red Hat Linux.

B. About this Document
This document must be distributed under the terms of GNU Free Documentation License [http://
www.gnu.org/copyleft/fdl.html], which makes him sufficiently free. Everybody in invited to contribute
to his content and ideas.

Copyright 2002, Avi Alkalay.

This document is published in the following locations:

• Main distribution [http://avi.alkalay.net/linux/docs/HighQuality/] [pt_BR [http://avi.alkalay.net/lin-
ux/docs/HighQuality/HighQuality.pt.html]] [XML Source [http://avi.alkalay.net/linux/docs/HighQual-
ity/highquality.tar.gz]]

• LinuxDoc, as a HOWTO [http://en.tldp.org/HOWTO/HighQuality-Apps-HOWTO/] [single
page [http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-
HOWTO.html]] [PDF [http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/HighQual-
ity-Apps-HOWTO.pdf]]

• Linux and Main essay [http://www.linuxandmain.org/essay/avi.html] (24th March 2002)

It was written originally in brazilian portuguese, and then translated to english. SGML and the more-then-
incredible DocBook was used, that made possible this document being distributed in other formats, found
in website.

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://avi.alkalay.net/linux/docs/HighQuality/
http://avi.alkalay.net/linux/docs/HighQuality/
http://avi.alkalay.net/linux/docs/HighQuality/HighQuality.pt.html
http://avi.alkalay.net/linux/docs/HighQuality/HighQuality.pt.html
http://avi.alkalay.net/linux/docs/HighQuality/HighQuality.pt.html
http://avi.alkalay.net/linux/docs/HighQuality/highquality.tar.gz
http://avi.alkalay.net/linux/docs/HighQuality/highquality.tar.gz
http://avi.alkalay.net/linux/docs/HighQuality/highquality.tar.gz
http://en.tldp.org/HOWTO/HighQuality-Apps-HOWTO/
http://en.tldp.org/HOWTO/HighQuality-Apps-HOWTO/
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/HighQuality-Apps-HOWTO.pdf
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/HighQuality-Apps-HOWTO.pdf
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/HighQuality-Apps-HOWTO.pdf
http://www.linuxandmain.org/essay/avi.html
http://www.linuxandmain.org/essay/avi.html

Designing Integrated High
Quality Linux Applications

21

It got ready (potuguese+english) in mid march 2002. Everything changed after this epoch is cosmetics.

I wrote it to help commercial companies and OpenSource developers make plug-and-play, easy-to-use
software for Linux, and this way improve Linux usability and popularity.

All concepts (from a high level perspective) described here, can be used in any UNIX flavor, or even other
OS, like Windows. Maybe some day I'll write one of these for Windows....or Mac....

	Designing Integrated High Quality Linux Applications
	Table of Contents
	Introduction
	User Friendly: Guaranteed Success
	Embrace the Install-and-Use Paradigm

	The Four Universal Parts of Any Software
	Practical Examples
	The Importance of Clear Separation Between Four Parts
	One Body, Many Souls

	Linux Directory Hierarchy: Oriented to the Software Parts
	FHS Summary
	Examples Using the FHS
	Developer, Do Not Install in /opt or /usr/local !

	Provide Architecture for Extensions and Plugins
	Abstracting About Plugins

	Allways Provide RPM Packages of Your Softwares
	Software Package Modularization

	Security: The Omnipresent Concept
	Graphical User Interface
	KDE, GNOME, Java or Motif?
	Web Interface: Access from Anywhere
	Wizards and Graphical Installers

	Starting Your Software Automatically on Boot
	From BIOS to Subsystems
	Runlevels
	The Subsystems
	Turning Your Software Into a Subsystem
	Packaging Your Boot Script

	A. Red Hat, About the Filesystem Structure
	B. About this Document

