
1

C++ dlopen mini HOWTO
Aaron Isotton <aaron@isotton.com>

2006-03-16

Revision History
Revision 1.10 2006-03-16 AI

Changed the license from the GFDL to the GPL. Fixed usage of dler-
ror; thanks to Carmelo Piccione. Using a virtual destructor in the exam-
ple; thanks to Joerg Knobloch. Added Source Code section. Minor fixes.

Revision 1.03 2003-08-12 AI
Added reference to the GLib Dynamic Module Loader. Thanks to G. V. Sriraam for the pointer.

Revision 1.02 2002-12-08 AI
Added FAQ. Minor changes

Revision 1.01 2002-06-30 AI
Updated virtual destructor explanation. Minor changes.

Revision 1.00 2002-06-19 AI
Moved copyright and license section to the beginning. Added terms section. Minor changes.

Revision 0.97 2002-06-19 JYG
Entered minor grammar and sentence level changes.

Revision 0.96 2002-06-12 AI
Added bibliography. Corrected explanation of extern functions and variables.

Revision 0.95 2002-06-11 AI
Minor improvements.

Abstract

How to dynamically load C++ functions and classes using the dlopen API.

Table of Contents
Introduction .. 2

Copyright and License ... 2
Disclaimer .. 2
Credits / Contributors ... 2
Feedback ... 2
Terms Used in this Document ... 2

The Problem .. 3
Name Mangling .. 3
Classes .. 3

The Solution .. 3
extern "C" ... 3
Loading Functions ... 4
Loading Classes .. 5

Source Code ... 8
Frequently Asked Questions .. 8
See Also .. 9
Bibliography ... 9

C++ dlopen mini HOWTO

2

Introduction
A question which frequently arises among Unix C++ programmers is how to load C++ functions and
classes dynamically using the dlopen API.

In fact, that is not always simple and needs some explanation. That's what this mini HOWTO does.

An average understanding of the C and C++ programming language and of the dlopen API is necessary
to understand this document.

This HOWTO's master location is http://www.isotton.com/howtos/C++-dlopen-mini-HOWTO/.

Copyright and License
This document, C++ dlopen mini HOWTO, is copyrighted (c) 2002-2006 by Aaron Isotton. Permission
is granted to copy, distribute and/or modify this document under the terms of the GNU General Public
License, Version 2, as published by the Free Software Foundation.

Disclaimer
No liability for the contents of this document can be accepted. Use the concepts, examples and information
at your own risk. There may be errors and inaccuracies, that could be damaging to your system. Proceed
with caution, and although this is highly unlikely, the author(s) do not take any responsibility.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a
term in this document should not be regarded as affecting the validity of any trademark or service mark.
Naming of particular products or brands should not be seen as endorsements.

Credits / Contributors
In this document, I have the pleasure of acknowledging (in alphabetic order):

• Joy Y Goodreau <joyg (at) us.ibm.com> for her editing.

• D. Stimitis <stimitis (at) idcomm.com> for pointing out a few issues with the formatting and
the name mangling, as well as pointing out a few subtleties of extern "C".

Many unnamed others pointing out errors or giving tips to improve this howto. You know who you are!

Feedback
Feedback is most certainly welcome for this document. Send your additions, comments and criticisms to
the following email address: <aaron@isotton.com>.

Terms Used in this Document
dlopen API The dlclose, dlerror, dlopen and dlsym functions as described in the

dlopen(3) man page.

Notice that we use “dlopen” to refer to the individual dlopen function, and “dlopen
API” to refer to the entire API.

http://www.isotton.com/howtos/C++-dlopen-mini-HOWTO/

C++ dlopen mini HOWTO

3

The Problem
At some time you might have to load a library (and use its functions) at runtime; this happens most often
when you are writing some kind of plug-in or module architecture for your program.

In the C language, loading a library is very simple (calling dlopen, dlsym and dlclose is enough),
with C++ this is a bit more complicated. The difficulties of loading a C++ library dynamically are partially
due to name mangling, and partially due to the fact that the dlopen API was written with C in mind, thus
not offering a suitable way to load classes.

Before explaining how to load libraries in C++, let's better analyze the problem by looking at name man-
gling in more detail. I recommend you read the explanation of name mangling, even if you're not interested
in it because it will help you understanding why problems occur and how to solve them.

Name Mangling

In every C++ program (or library, or object file), all non-static functions are represented in the binary
file as symbols. These symbols are special text strings that uniquely identify a function in the program,
library, or object file.

In C, the symbol name is the same as the function name: the symbol of strcpy will be strcpy, and so
on. This is possible because in C no two non-static functions can have the same name.

Because C++ allows overloading (different functions with the same name but different arguments) and has
many features C does not — like classes, member functions, exception specifications — it is not possible
to simply use the function name as the symbol name. To solve that, C++ uses so-called name mangling,
which transforms the function name and all the necessary information (like the number and size of the
arguments) into some weird-looking string which only the compiler knows about. The mangled name of
foo might look like foo@4%6^, for example. Or it might not even contain the word “foo”.

One of the problems with name mangling is that the C++ standard (currently [ISO14882]) does not define
how names have to be mangled; thus every compiler mangles names in its own way. Some compilers even
change their name mangling algorithm between different versions (notably g++ 2.x and 3.x). Even if you
worked out how your particular compiler mangles names (and would thus be able to load functions via
dlsym), this would most probably work with your compiler only, and might already be broken with the
next version.

Classes

Another problem with the dlopen API is the fact that it only supports loading functions. But in C++ a
library often exposes a class which you would like to use in your program. Obviously, to use that class
you need to create an instance of it, but that cannot be easily done.

The Solution

extern "C"

C++ has a special keyword to declare a function with C bindings: extern "C". A function declared as
extern "C" uses the function name as symbol name, just as a C function. For that reason, only non-
member functions can be declared as extern "C", and they cannot be overloaded.

C++ dlopen mini HOWTO

4

Although there are severe limitations, extern "C" functions are very useful because they can be dy-
namically loaded using dlopen just like a C function.

This does not mean that functions qualified as extern "C" cannot contain C++ code. Such a function
is a full-featured C++ function which can use C++ features and take any type of argument.

Loading Functions
In C++ functions are loaded just like in C, with dlsym. The functions you want to load must be qualified
as extern "C" to avoid the symbol name being mangled.

Example 1. Loading a Function

main.cpp:

#include <iostream>
#include <dlfcn.h>

int main() {
 using std::cout;
 using std::cerr;

 cout << "C++ dlopen demo\n\n";

 // open the library
 cout << "Opening hello.so...\n";
 void* handle = dlopen("./hello.so", RTLD_LAZY);

 if (!handle) {
 cerr << "Cannot open library: " << dlerror() << '\n';
 return 1;
 }

 // load the symbol
 cout << "Loading symbol hello...\n";
 typedef void (*hello_t)();

 // reset errors
 dlerror();
 hello_t hello = (hello_t) dlsym(handle, "hello");
 const char *dlsym_error = dlerror();
 if (dlsym_error) {
 cerr << "Cannot load symbol 'hello': " << dlsym_error <<
 '\n';
 dlclose(handle);
 return 1;
 }

 // use it to do the calculation
 cout << "Calling hello...\n";
 hello();

 // close the library
 cout << "Closing library...\n";

C++ dlopen mini HOWTO

5

 dlclose(handle);
}

hello.cpp:

#include <iostream>

extern "C" void hello() {
 std::cout << "hello" << '\n';
}

The function hello is defined in hello.cppas extern "C"; it is loaded in main.cpp with the
dlsym call. The function must be qualified as extern "C" because otherwise we wouldn't know its
symbol name.

Warning

There are two different forms of the extern "C" declaration: extern "C" as used above,
and extern "C" { … } with the declarations between the braces. The first (inline) form is
a declaration with extern linkage and with C language linkage; the second only affects language
linkage. The following two declarations are thus equivalent:

extern "C" int foo;
extern "C" void bar();

and

extern "C" {
 extern int foo;
 extern void bar();
}

As there is no difference between an extern and a non-extern function declaration, this is no
problem as long as you are not declaring any variables. If you declare variables, keep in mind that

extern "C" int foo;

and

extern "C" {
 int foo;
}

are not the same thing.

For further clarifications, refer to [ISO14882], 7.5, with special attention to paragraph 7, or to
[STR2000], paragraph 9.2.4.

Before doing fancy things with extern variables, peruse the documents listed in the see also sec-
tion.

Loading Classes
Loading classes is a bit more difficult because we need an instance of a class, not just a pointer to a function.

C++ dlopen mini HOWTO

6

We cannot create the instance of the class using new because the class is not defined in the executable,
and because (under some circumstances) we don't even know its name.

The solution is achieved through polymorphism. We define a base, interface class with virtual members in
the executable, and a derived, implementation class in the module. Generally the interface class is abstract
(a class is abstract if it has pure virtual functions).

As dynamic loading of classes is generally used for plug-ins — which must expose a clearly defined
interface — we would have had to define an interface and derived implementation classes anyway.

Next, while still in the module, we define two additional helper functions, known as class factory functions.
One of these functions creates an instance of the class and returns a pointer to it. The other function takes a
pointer to a class created by the factory and destroys it. These two functions are qualified as extern "C".

To use the class from the module, load the two factory functions using dlsym just as we loaded the hello
function; then, we can create and destroy as many instances as we wish.

Example 2. Loading a Class

Here we use a generic polygon class as interface and the derived class triangle as implementation.

main.cpp:

#include "polygon.hpp"
#include <iostream>
#include <dlfcn.h>

int main() {
 using std::cout;
 using std::cerr;

 // load the triangle library
 void* triangle = dlopen("./triangle.so", RTLD_LAZY);
 if (!triangle) {
 cerr << "Cannot load library: " << dlerror() << '\n';
 return 1;
 }

 // reset errors
 dlerror();

 // load the symbols
 create_t* create_triangle = (create_t*) dlsym(triangle, "create");
 const char* dlsym_error = dlerror();
 if (dlsym_error) {
 cerr << "Cannot load symbol create: " << dlsym_error << '\n';
 return 1;
 }

 destroy_t* destroy_triangle = (destroy_t*) dlsym(triangle, "destroy");
 dlsym_error = dlerror();
 if (dlsym_error) {
 cerr << "Cannot load symbol destroy: " << dlsym_error << '\n';
 return 1;
 }

C++ dlopen mini HOWTO

7

 // create an instance of the class
 polygon* poly = create_triangle();

 // use the class
 poly->set_side_length(7);
 cout << "The area is: " << poly->area() << '\n';

 // destroy the class
 destroy_triangle(poly);

 // unload the triangle library
 dlclose(triangle);
}

polygon.hpp:

#ifndef POLYGON_HPP
#define POLYGON_HPP

class polygon {
protected:
 double side_length_;

public:
 polygon()
 : side_length_(0) {}

 virtual ~polygon() {}

 void set_side_length(double side_length) {
 side_length_ = side_length;
 }

 virtual double area() const = 0;
};

// the types of the class factories
typedef polygon* create_t();
typedef void destroy_t(polygon*);

#endif

triangle.cpp:

#include "polygon.hpp"
#include <cmath>

class triangle : public polygon {
public:
 virtual double area() const {
 return side_length_ * side_length_ * sqrt(3) / 2;
 }
};

C++ dlopen mini HOWTO

8

// the class factories

extern "C" polygon* create() {
 return new triangle;
}

extern "C" void destroy(polygon* p) {
 delete p;
}

There are a few things to note when loading classes:

• You must provide both a creation and a destruction function; you must not destroy the instances using
delete from inside the executable, but always pass it back to the module. This is due to the fact that
in C++ the operators new and delete may be overloaded; this would cause a non-matching new and
delete to be called, which could cause anything from nothing to memory leaks and segmentation
faults. The same is true if different standard libraries are used to link the module and the executable.

• The destructor of the interface class should be virtual in any case. There might be very rare cases where
that would not be necessary, but it is not worth the risk, because the additional overhead can generally
be ignored.

If your base class needs no destructor, define an empty (and virtual) one anyway; otherwise you will
have problems sooner or later; I can guarantee you that. You can read more about this problem in the
comp.lang.c++ FAQ at http://www.parashift.com/c++-faq-lite/, in section 20.

Source Code
You can download all the source code presented in this howto as an archive: examples.tar.gz.

Frequently Asked Questions
1. I'm using Windows and I can't find the dlfcn.h header file! What's the problem?

The problem is that Windows doesn't have the dlopen API, and thus there is no dlfcn.h header.
There is a similar API around the LoadLibrary function, and most of what is written here applies
to it, too. Please refer to the Microsoft Developer Network Website [http://msdn.microsoft.com/]
for more information.

2. Is there some kind of dlopen-compatible wrapper for the Windows LoadLibrary API?

I don't know of any, and I don't think there'll ever be one supporting all of dlopen's options.

There are alternatives though: libtltdl (a part of libtool), which wraps a variety of different dynam-
ic loading APIs, among others dlopen and LoadLibrary. Another one is the Dynamic Mod-
ule Loading functionality of GLib [http://developer.gnome.org/doc/API/glib/glib-dynamic-load-
ing-of-modules.html]. You can use one of these to ensure better possible cross-platform compati-
bility. I've never used any of them, so I can't tell you how stable they are and whether they really
work.

You should also read section 4, “Dynamically Loaded (DL) Libraries”, of the Program Library
HOWTO [http://www.dwheeler.com/program-library] for more techniques to load libraries and
create classes independently of your platform.

http://www.parashift.com/c++-faq-lite/
examples.tar.gz
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library

C++ dlopen mini HOWTO

9

See Also
• The dlopen(3) man page. It explains the purpose and the use of the dlopen API.

• The article Dynamic Class Loading for C++ on Linux [http://www.linuxjournal.com/article.php?
sid=3687] by James Norton published on the Linux Journal [http://www.linuxjournal.com/].

• Your favorite C++ reference about extern "C", inheritance, virtual functions, new and delete.
I recommend [STR2000].

• [ISO14882]

• The Program Library HOWTO [http://www.dwheeler.com/program-library], which tells you most
things you'll ever need about static, shared and dynamically loaded libraries and how to create them.
Highly recommended.

• The Linux GCC HOWTO [http://tldp.org/HOWTO/GCC-HOWTO/index.html] to learn more about
how to create libraries with GCC.

Bibliography
[ISO14482] ISO/IEC 14482-1998 — The C++ Programming Language. Available as PDF and as printed book from

http://webstore.ansi.org/.

[STR2000] Bjarne Stroustrup The C++ Programming Language, Special Edition. ISBN 0-201-70073-5. Addison-Wes-
ley.

http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/
http://www.linuxjournal.com/
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library
http://tldp.org/HOWTO/GCC-HOWTO/index.html
http://tldp.org/HOWTO/GCC-HOWTO/index.html
http://webstore.ansi.org/

	C++ dlopen mini HOWTO
	Table of Contents
	Introduction
	Copyright and License
	Disclaimer
	Credits / Contributors
	Feedback
	Terms Used in this Document

	The Problem
	Name Mangling
	Classes

	The Solution
	extern "C"
	Loading Functions
	Loading Classes

	Source Code
	Frequently Asked Questions
	See Also
	Bibliography

