
Large Disk HOWTO

Table of Contents
Large Disk HOWTO...1

Andries Brouwer, aeb@cwi.nl...1
1. Large disks...1
2. Units..2
3. Disk Access..2
3.1 Cylinders, heads and sectors..3
3.2 Sectorsize...3
3.3 Disksize..3
3.4 The 1024 cylinder and 8.5 GB limits...3
3.5 The 137 GB limit...4
4. History of BIOS and IDE limits..4
5. Booting...5
5.1 LILO and the `lba32' and `linear' options..6

5.2 A LILO bug..6
5.3 1024 cylinders is not 1024 cylinders...6
5.4 No 1024 cylinder limit on old machines with IDE..7
5.5 Other boot loaders..7
6. Disk geometry, partitions and `overlap'..7
6.1 The last cylinder...8
6.2 Cylinder boundaries...8
7. Translation and Disk Managers...9
8. Kernel disk translation for IDE disks...10
8.1 EZD..10
8.2 DM6:DDO...10
8.3 DM6:AUX...10
8.4 DM6:MBR...10
8.5 PTBL..10
8.6 Getting rid of a disk manager...11
8.7 Since 2.5.70: boot parameters..11
9. Consequences...11
9.1 Computing LILO parameters...13
10. Details..13
10.1 IDE details - the seven geometries...13

 The IDENTIFY DRIVE command..14
10.2 SCSI details..15
11. Clipped disks..17
11.1 The Linux IDE 8 GiB limit..17
11.2 BIOS complications...17
11.3 Jumpers that select the number of heads...18

11.4 Jumpers that clip total capacity..18
Clip to 2.1 GB...18
 Clip to 33 GB...18
Maxtor...19
IBM...19
Seagate...19
Maxtor D540X-4K..20
Western Digital..20

11.5 READ NATIVE MAX ADDRESS / SET MAX ADDRESS...20

Large Disk HOWTO

i

Table of Contents
Large Disk HOWTO

11.6 CONFIG_IDEDISK_STROKE...21
12. The Linux 65535 cylinder limit...21
12.1 IDE problems with 34+ GB disks...21

13. Extended and logical partitions..22
14. Problem solving...23
14.1 Problem: My IDE disk gets a bad geometry when I boot from SCSI..23
14.2 Nonproblem: Identical disks have different geometry?...23
14.3 Problem: 2.4 and 2.6 report different geometries? 2.6 reports the wrong geometry? 2.6
 reports no geometry at all?..24
14.4 Nonproblem: fdisk sees much more room than df?...24

Large Disk HOWTO

ii

Large Disk HOWTO

Andries Brouwer, aeb@cwi.nl

v2.5, 2004-11-01

All about disk geometry and the 1024 cylinder and other limits for disks.

For the most recent version of this text, see www.win.tue.nl.

1. Large disks

You got a new disk. What to do? Well, on the software side: use fdisk or cfdisk to create partitions, and
then mke2fs or mkreiserfs or so to create a filesystem, and then mount to attach the new filesystem to
the big file hierarchy. Make sure you have relatively recent versions of these utilities - often old versions have
problems handling large disks.

You need not read this HOWTO since there are no problems with large hard disks these days.

Long ago, disks were large when they had a capacity larger than 528 MB, or than 8.4 GB, or than 33.8 GB.
These days the interesting limit is 137 GB. In all cases, sufficiently recent Linux kernels handle the disk fine.

Sometimes booting requires some care, since Linux cannot help you when it isn't running yet. But again, with
a sufficiently recent BIOS and boot loader there are no problems. Most of the text below will treat the cases of
(i) ancient hardware, (ii) broken hardware or BIOS, (iii) several operating systems on the same disk, (iv)
booting old systems.

Advice

For large SCSI disks: Linux has supported them from very early on. No action required.

For large IDE disks (over 8.4 GB): make sure your kernel is 2.0.34 or later.

For large IDE disks (over 33.8 GB): make sure your kernel is 2.0.39/2.2.14/2.3.21 or later.

For large IDE disks (over 137 GB): make sure your kernel is 2.4.19/2.5.3 or later.

If the kernel boots fine, and the boot messages indicate that it recognizes the disk correctly, but there are
problems with utilities, upgrade the utilities.

If LILO hangs at boot time, make sure you have version 21.4 or later, and specify the keyword lba32 in the
configuration file /etc/lilo.conf. With an older version of LILO, try both with and without the
linear keyword.

There may be geometry problems that can be solved by giving an explicit geometry to kernel/LILO/fdisk.

If you have an old fdisk and it warns about overlapping partitions: ignore the warnings, or check using
cfdisk that really all is well.

Large Disk HOWTO 1

For HPT366, see the Linux HPT366 HOWTO.

If at boot time the kernel cannot read the partition table, consider the possibility that UDMA66 was selected
while the controller or the cable or the disk drive did not support UDMA66. In such a case every attempt to
read will fail, and reading the partition table is the first thing the kernel does. Make sure no UDMA66 is used.

If the BIOS hangs at boot time because of a large disk, and flashing a newer version is not an option, take the
disk out of the BIOS setup. If you have to boot from the disk, look whether a capacity clipping jumper helps.

If you think something is wrong with the size of your disk, make sure that you are not confusing binary and
decimal units , and realize that the free space that df reports on an empty disk is a few percent smaller than
the partition size, because there is administrative overhead. Software that does not understand 48-bit
addressing will view a 137+ GB disk as having a capacity of 137 GB. When a capacity clipping jumper is
present, a larger disk may have been clipped to 33 GB or to 2 GB.

If for a removable drive the kernel reports two different sizes, then one is found from the drive, and the other
from the disk/floppy. This second value will be zero when the drive has no media.

Now, if you still think there are problems, or just are curious, read on.

Below a rather detailed description of all relevant details. I used kernel version 2.0.8 source as a reference.
Other versions may differ a bit.

2. Units

A kilobyte (kB) is 1000 bytes. A megabyte (MB) is 1000 kB. A gigabyte (GB) is 1000 MB. A terabyte (TB)
is 1000 GB. This is the SI norm. However, there are people that use 1 MB=1024000 bytes and talk about 1.44
MB floppies, and people who think that 1 MB=1048576 bytes. Here I follow the recent standard and write Ki,
Mi, Gi, Ti for the binary units, so that these floppies are 1440 KiB (1.47 MB, 1.41 MiB), 1 MiB is 1048576
bytes (1.05 MB), 1 GiB is 1073741824 bytes (1.07 GB) and 1 TiB is 1099511627776 bytes (1.1 TB).

Quite correctly, the disk drive manufacturers follow the SI norm and use the decimal units. However, Linux
kernel boot messages (for not-so-recent kernels) and some old fdisk-type programs use the symbols MB and
GB for binary, or mixed binary-decimal units. So, before you think your disk is smaller than was promised
when you bought it, compute first the actual size in decimal units (or just in bytes).

Concerning terminology and abbreviation for binary units, Knuth has an alternative proposal, namely to use
KKB, MMB, GGB, TTB, PPB, EEB, ZZB, YYB and to call these large kilobyte, large megabyte, ... large
yottabyte. He writes: `Notice that doubling the letter connotes both binary-ness and large-ness.' This is a good
proposal - `large gigabyte' sounds better than `gibibyte'. For our purposes however the only important thing is
to stress that a megabyte has precisely 1000000 bytes, and that some other term and abbreviation is required if
you mean something else.

3. Disk Access

Disk access is done in units called sectors. In order to read or write something from or to the disk, we have to
specify the position on the disk, for example by giving the sector number. If the disk is a SCSI disk, then this
sector number goes directly into the SCSI command and is understood by the disk. If the disk is an IDE disk
using LBA, then precisely the same holds. But if the disk is old, RLL or MFM or IDE from before the LBA
times, then the disk hardware expects a triple (cylinder,head,sector) to designate the desired spot on the disk.

Large Disk HOWTO

Large Disk HOWTO 2

3.1 Cylinders, heads and sectors

A disk has sectors numbered 0, 1, 2, ... This is called LBA addressing.

In ancient times, before the advent of IDE disks, disks had a geometry described by three constants C, H, S:
the number of cylinders, the number of heads, the number of sectors per track. The address of a sector was
given by three numbers: c, h, s: the cylinder number (between 0 and C-1), the head number (between 0 and
H-1), and the sector number within the track (between 1 and S), where for some mysterious reason c and h
count from 0, but s counts from 1. This is called CHS addressing.

No disk manufactured less than ten years ago has a geometry, but this ancient 3D sector addressing is still
used by the INT13 BIOS interface (with fantasy numbers C, H, S unrelated to any physical reality).

The correspondence between the linear numbering and this 3D notation is as follows: for a disk with C
cylinders, H heads and S sectors/track position (c,h,s) in 3D or CHS notation is the same as position c*H*S +
h*S + (s-1) in linear or LBA notation.

Consequently, in order to access a very old non-SCSI disk, we need to know its geometry, that is, the values
of C, H and S. (And if you don't know, there is a lot of good information on www.thetechpage.com.)

3.2 Sectorsize

In the present text a sector has 512 bytes. This is almost always true, but for example certain MO disks use a
sectorsize of 2048 bytes, and all capacities given below must be multiplied by four. (When using fdisk on
such disks, make sure you have version 2.9i or later, and give the `-b 2048' option.)

3.3 Disksize

A disk with C cylinders, H heads and S sectors per track has C*H*S sectors in all, and can store C*H*S*512
bytes. For example, if the disk label says C/H/S=4092/16/63 then the disk has 4092*16*63=4124736 sectors,
and can hold 4124736*512=2111864832 bytes (2.11 GB). There is an industry convention to give
C/H/S=16383/16/63 for disks larger than 8.4 GB, and the disk size can no longer be read off from the C/H/S
values reported by the disk.

3.4 The 1024 cylinder and 8.5 GB limits

The old INT13 BIOS interface to disk I/O uses 24 bits to address a sector: 10 bits for the cylinder, 8 bits for
the head, and 6 bits for the sector number within the track (counting from 1). This means that this interface
cannot address more than 1024*256*63 sectors, which is 8.5 GB (with 512-byte sectors). And if the (fantasy)
geometry specified for the disk has fewer than 1024 cylinders, or 256 heads, or 63 sectors per track, then this
limit will be less.

(More precisely: with INT 13, AH selects the function to perform, CH is the low 8 bits of the cylinder
number, CL has in bits 7-6 the high two bits of the cylinder number and in bits 5-0 the sector number, DH is
the head number, and DL is the drive number (80h or 81h). This explains part of the layout of the partition
table.)

This state of affairs was rectified when the so-called Extended INT13 functions were introduced. A modern
BIOS has no problems accessing large disks.

Large Disk HOWTO

Large Disk HOWTO 3

(More precisely: DS:SI points at a 16-byte Disk Address Packet that contains an 8-byte starting absolute block
number.)

Linux does not use the BIOS, so does (and did) not have this problem.

However, this geometry stuff plays a role in the interpretation of partition tables, so if Linux shares a disk
with for example DOS, then it needs to know what geometry DOS will think the disk has. It also plays a role
at boot time, where the BIOS has to load a boot loader, and the boot loader has to load the operating system.

3.5 The 137 GB limit

The old ATA standard describes how to address a sector on an IDE disk using 28 bits (8 bits for the sector, 4
for the head, 16 for the cylinder). This means that an IDE disk can have at most 2^28 addressable sectors With
512-byte sectors this is 2^37 bytes, that is, 137.4 GB.

The ATA-6 standard includes a specification how to address past this 2^28 sector boundary. The new standard
allows addressing of 2^48 sectors. There is support in recent Linux kernels that have incorporated Andre
Hedrick's IDE patch, for example 2.4.18-pre7-ac3 and 2.5.3.

Maxtor sells 160 GB IDE disks since Fall 2001. An old kernel will treat such disks as 137.4 GB disks.

4. History of BIOS and IDE limits

ATA Specification (for IDE disks) - the 137 GB limit
At most 65536 cylinders (numbered 0-65535), 16 heads (numbered 0-15), 255 sectors/track
(numbered 1-255), for a maximum total capacity of 267386880 sectors (of 512 bytes each), that is,
136902082560 bytes (137 GB). In Sept 2001, the first drives larger than this (160 GB Maxtor
Diamondmax) appeared.

BIOS Int 13 - the 8.5 GB limit
At most 1024 cylinders (numbered 0-1023), 256 heads (numbered 0-255), 63 sectors/track (numbered
1-63) for a maximum total capacity of 8455716864 bytes (8.5 GB). This is a serious limitation today.
It means that DOS cannot use present day large disks.

The 528 MB limit
If the same values for c,h,s are used for the BIOS Int 13 call and for the IDE disk I/O, then both
limitations combine, and one can use at most 1024 cylinders, 16 heads, 63 sectors/track, for a
maximum total capacity of 528482304 bytes (528MB), the infamous 504 MiB limit for DOS with an
old BIOS. This started being a problem around 1993, and people resorted to all kinds of trickery, both
in hardware (LBA), in firmware (translating BIOS), and in software (disk managers). The concept of
`translation' was invented (1994): a BIOS could use one geometry while talking to the drive, and
another, fake, geometry while talking to DOS, and translate between the two.

The 2.1 GB limit (April 1996)
Some older BIOSes only allocate 12 bits for the field in CMOS RAM that gives the number of
cylinders. Consequently, this number can be at most 4095, and only 4095*16*63*512=2113413120
bytes are accessible. The effect of having a larger disk would be a hang at boot time. This made disks
with geometry 4092/16/63 rather popular. And still today many large disk drives come with a jumper
to make them appear 4092/16/63. See also over2gb.htm. Other BIOSes would not hang but just detect
a much smaller disk, like 429 MB instead of 2.5 GB.

The 3.2 GB limit
There was a bug in the Phoenix 4.03 and 4.04 BIOS firmware that would cause the system to lock up
in the CMOS setup for drives with a capacity over 3277 MB. See over3gb.htm.

Large Disk HOWTO

Large Disk HOWTO 4

The 4.2 GB limit (Feb 1997)
Simple BIOS translation (ECHS=Extended CHS, sometimes called `Large disk support' or just
`Large') works by repeatedly doubling the number of heads and halving the number of cylinders
shown to DOS, until the number of cylinders is at most 1024. Now DOS and Windows 95 cannot
handle 256 heads, and in the common case that the disk reports 16 heads, this means that this simple
mechanism only works up to 8192*16*63*512=4227858432 bytes (with a fake geometry with 1024
cylinders, 128 heads, 63 sectors/track). Note that ECHS does not change the number of sectors per
track, so if that is not 63, the limit will be lower. See over4gb.htm.

The 7.9 GB limit
Slightly smarter BIOSes avoid the previous problem by first adjusting the number of heads to 15
(`revised ECHS'), so that a fake geometry with 240 heads can be obtained, good for
1024*240*63*512=7927234560 bytes.

The 8.4 GB limit
Finally, if the BIOS does all it can to make this translation a success, and uses 255 heads and 63
sectors/track (`assisted LBA' or just `LBA') it may reach 1024*255*63*512=8422686720 bytes,
slightly less than the earlier 8.5 GB limit because the geometries with 256 heads must be avoided.
(This translation will use for the number of heads the first value H in the sequence 16, 32, 64, 128,
255 for which the total disk capacity fits in 1024*H*63*512, and then computes the number of
cylinders C as total capacity divided by (H*63*512).)

The 33.8 GB limit (August 1999)
The next hurdle comes with a size over 33.8 GB. The problem is that with the default 16 heads and
63 sectors/track this corresponds to a number of cylinders of more than 65535, which does not fit into
a short. Many BIOSes couldn't handle such disks. (See, e.g., Asus upgrades for new flash images that
work.) Linux kernels older than 2.2.14 / 2.3.21 need a patch. See IDE problems with 34+ GB disks
below.

The 137 GB limit (Sept 2001)
As mentioned above, the old ATA protocol uses 16+4+8 = 28 bits to specify the sector number, and
hence cannot address more than 2^28 sectors. ATA-6 describes an extension that allows the
addressing of 2^48 sectors, a million times as much. There is support in very recent kernels.

The 2 TiB limit
With 32-bit sector numbers, one can address 2 TiB. A lot of software will have to be rewritten once
disks get larger.

Hard drives over 8.4 GB are supposed to report their geometry as 16383/16/63. This in effect means that the
`geometry' is obsolete, and the total disk size can no longer be computed from the geometry, but is found in
the LBA capacity field returned by the IDENTIFY command. Hard drives over 137.4 GB are supposed to
report an LBA capacity of 0xfffffff = 268435455 sectors (137438952960 bytes). Now the actual disk size is
found in the new 48-capacity field.

5. Booting

When the system is booted, the BIOS reads sector 0 (known as the MBR - the Master Boot Record) from the
first disk (or from floppy or CDROM), and jumps to the code found there - usually some bootstrap loader.
These small bootstrap programs found there typically have no own disk drivers and use BIOS services. This
means that a Linux kernel can only be booted when it is entirely located within the first 1024 cylinders, unless
you both have a modern BIOS (a BIOS that supports the Extended INT13 functions), and a modern
bootloader (a bootloader that uses these functions when available).

This problem (if it is a problem) is very easily solved: make sure that the kernel (and perhaps other files used
during bootup, such as LILO map files) are located on a partition that is entirely contained in the first 1024

Large Disk HOWTO

Large Disk HOWTO 5

cylinders of a disk that the BIOS can access - probably this means the first or second disk.

Thus: create a small partition, say 10 MB large, so that there is room for a handful of kernels, making sure that
it is entirely contained within the first 1024 cylinders of the first or second disk. Mount it on /boot so that
LILO will put its stuff there.

Most systems from 1998 or later will have a modern BIOS.

5.1 LILO and the `lba32' and `linear' options

Executive summary: If you use LILO as boot loader, make sure you have LILO version 21.4 or later. (It can
be found at ftp://metalab.unc.edu/pub/Linux/system/boot/lilo/.) Always use the lba32 option.

An invocation of /sbin/lilo (the boot map installer) stores a list of addresses in the boot map, so that
LILO (the boot loader) knows from where to read the kernel image. By default these addresses are stored in
(c,h,s) form, and ordinary INT13 calls are used at boot time.

When the configuration file specifies lba32 or linear, linear addresses are stored. With lba32 also linear
addresses are used at boot time, when the BIOS supports extended INT13. With linear, or with an old
BIOS, these linear addresses are converted back to (c,h,s) form, and ordinary INT13 calls are used.

Thus, with lba32 there are no geometry problems and there is no 1024 cylinder limit. Without it there is a
1024 cylinder limit. What about the geometry?

The boot loader and the BIOS must agree as to the disk geometry. /sbin/lilo asks the kernel for the
geometry, but there is no guarantee that the Linux kernel geometry coincides with what the BIOS will use.
Thus, often the geometry supplied by the kernel is worthless. In such cases it helps to give LILO the
`linear' option. The advantage is that the Linux kernel idea of the geometry no longer plays a role. The
disadvantage is that lilo cannot warn you when part of the kernel was stored above the 1024 cylinder limit,
and you may end up with a system that does not boot.

5.2 A LILO bug

With LILO versions below v21 there is another disadvantage: the address conversion done at boot time has a
bug: when c*H is 65536 or more, overflow occurs in the computation. For H larger than 64 this causes a
stricter limit on c than the well-known c < 1024; for example, with H=255 and an old LILO one must have c <
258. (c=cylinder where kernel image lives, H=number of heads of disk)

5.3 1024 cylinders is not 1024 cylinders

Tim Williams writes: `I had my Linux partition within the first 1024 cylinders and still it wouldnt boot. First
when I moved it below 1 GB did things work.' How can that be? Well, this was a SCSI disk with
AHA2940UW controller which uses either H=64, S=32 (that is, cylinders of 1 MiB = 1.05 MB), or H=255,
S=63 (that is, cylinders of 8.2 MB), depending on setup options in firmware and BIOS. No doubt the BIOS
assumed the former, so that the 1024 cylinder limit was found at 1 GiB, while Linux used the latter and LILO
thought that this limit was at 8.4 GB.

Large Disk HOWTO

Large Disk HOWTO 6

5.4 No 1024 cylinder limit on old machines with IDE

The nuni boot loader does not use BIOS services but accesses IDE drives directly. So, one can put it on a
floppy or in the MBR and boot from anywhere on any IDE drive (not only from the first two). Find it at
//metalab.unc.edu/pub/Linux/system/boot/loaders/.

5.5 Other boot loaders

LILO is a bit fragile, it requires the discipline of running /sbin/lilo each time one installs a new kernel.
Some other boot loaders do not have this disadvantage. Especially grub is popular these days; a major
disadvantage is that it does not support the lilo -R label function.

6. Disk geometry, partitions and `overlap'

If you have several operating systems on your disks, then each uses one or more disk partitions. A
disagreement on where these partitions are may have catastrophic consequences.

The MBR contains a partition table describing where the (primary) partitions are. There are 4 table entries,
for 4 primary partitions, and each looks like

struct partition {
 char active; /* 0x80: bootable, 0: not bootable */
 char begin[3]; /* CHS for first sector */
 char type;
 char end[3]; /* CHS for last sector */
 int start; /* 32 bit sector number (counting from 0) */
 int length; /* 32 bit number of sectors */
};

(where CHS stands for Cylinder/Head/Sector).

This information is redundant: the location of a partition is given both by the 24-bit begin and end fields,
and by the 32-bit start and length fields.

Linux only uses the start and length fields, and can therefore handle partitions of not more than 2^32
sectors, that is, partitions of at most 2 TiB. That is twelve times larger than the disks available today, so
maybe it will be enough for the next five years or so. (So, partitions can be very large, but there is a serious
restriction in that a file in an ext2 filesystem on hardware with 32-bit integers cannot be larger than 2 GiB.)

DOS uses the begin and end fields, and uses the BIOS INT13 call to access the disk, and can therefore only
handle disks of not more than 8.4 GB, even with a translating BIOS. (Partitions cannot be larger than 2.1 GB
because of restrictions of the FAT16 file system.) The same holds for Windows 3.11 and WfWG and
Windows NT 3.*.

Windows 95 has support for the Extended INT13 interface, and uses special partition types (c, e, f instead of
b, 6, 5) to indicate that a partition should be accessed in this way. When these partition types are used, the
begin and end fields contain dummy information (1023/255/63). Windows 95 OSR2 introduces the FAT32
file system (partition type b or c), that allows partitions of size at most 2 TiB.

What is this nonsense you get from fdisk about `overlapping' partitions, when in fact nothing is wrong?
Well - there is something `wrong': if you look at the begin and end fields of such partitions, as DOS does,

Large Disk HOWTO

Large Disk HOWTO 7

they overlap. (And that cannot be corrected, because these fields cannot store cylinder numbers above 1024 -
there will always be `overlap' as soon as you have more than 1024 cylinders.) However, if you look at the
start and length fields, as Linux does, and as Windows 95 does in the case of partitions with partition
type c, e or f, then all is well. So, ignore these warnings when cfdisk is satisfied and you have a Linux-only
disk. Be careful when the disk is shared with DOS. Use the commands cfdisk -Ps /dev/hdx and
cfdisk -Pt /dev/hdx to look at the partition table of /dev/hdx.

6.1 The last cylinder

Many old IBM PS/2 systems used disks with a defect map written to the end of the disk. (Bit 0x20 in the
control word of the disk parameter table is set.) Therefore, FDISK would not use the last cylinder. Just to be
sure, the BIOS often already reports the size of the disk as one cylinder smaller than reality, and that may
mean that two cylinders are lost. Newer BIOSes have several disk size reporting functions, where internally
one calls the other. When both subtract 1 for this reserved cylinder and also FDISK does so, then one may
lose three cylinders. These days all of this is irrelevant, but this may provide an explanation if one observes
that different utilities have slightly different opinions about the disk size.

6.2 Cylinder boundaries

A well-known claim says that partitions should start and end at cylinder boundaries.

Since "disk geometry" is something without objective existence, different operating systems will invent
different geometries for the same disk. One often sees a translated geometry like */255/63 used by one and an
untranslated geometry like */16/63 used by another OS. (People tell me Windows NT uses */64/32 while
Windows 2K uses */255/63.) Thus, it may be impossible to align partitions to cylinder boundaries according
to each of the various ideas about the size of a cylinder that one's systems have. Also different Linux kernels
may assign different geometries to the same disk. Also, enabling or disabling the BIOS of a SCSI card may
change the fake geometry of the connected SCSI disks.

Fortunately, for Linux there is no alignment requirement at all. (Except that some semi-broken installation
software likes to be very sure that all is OK; thus, it may be impossible to install RedHat 7.1 on a disk with
unaligned partitions because DiskDruid is unhappy.)

People report that it is easy to create nonaligned partitions in Windows NT, without any noticeable bad
effects.

But MSDOS 6.22 has an alignment requirement. Extended partition sectors that are not on a cylinder
boundary are ignored by its FDISK. The system itself is happy with any alignment, but interprets relative
starting addresses as if relative to an aligned address: The starting address of a logical partition is given
relative not to the address of the extended partition sector that describes it, but relative to the start of the
cylinder that contains that sector. (So, it is not surprising that also PartitionMagic requires alignment.)

What is the definition of alignment? MSDOS 6.22 FDISK will do the following: 1. If the first sector of the
cylinder is a partition table sector, then the rest of the track is unused, and the partition starts with the next
track. This applies to sector 0 (the MBR) and the partition table sectors preceding logical partitions. 2.
Otherwise, the partition starts at the first sector of the cylinder. Also the extended partition starts at a cylinder
boundary. The cfdisk man page says that old versions of DOS did not align partitions.

Use of partition type 85 for the extended partition makes it invisible to DOS, making sure that only Linux will
look inside.

Large Disk HOWTO

Large Disk HOWTO 8

As an aside: on a Sparc, the boot partition must start on a cylinder boundary (but there is no requirement on
the end).

7. Translation and Disk Managers

Disk geometry (with heads, cylinders and tracks) is something from the age of MFM and RLL. In those days
it corresponded to a physical reality. Nowadays, with IDE or SCSI, nobody is interested in what the `real'
geometry of a disk is. Indeed, the number of sectors per track is variable - there are more sectors per track
close to the outer rim of the disk - so there is no `real' number of sectors per track. Quite the contrary: the IDE
command INITIALIZE DRIVE PARAMETERS (91h) serves to tell the disk how many heads and sectors per
track it is supposed to have today. It is quite normal to see a large modern disk that has 2 heads report 15 or 16
heads to the BIOS, while the BIOS may again report 255 heads to user software.

For the user it is best to regard a disk as just a linear array of sectors numbered 0, 1, ..., and leave it to the
firmware to find out where a given sector lives on the disk. This linear numbering is called LBA.

So now the conceptual picture is the following. DOS, or some boot loader, talks to the BIOS, using (c,h,s)
notation. The BIOS converts (c,h,s) to LBA notation using the fake geometry that the user is using. If the disk
accepts LBA then this value is used for disk I/O. Otherwise, it is converted back to (c',h',s') using the
geometry that the disk uses today, and that is used for disk I/O.

Note that there is a bit of confusion in the use of the expression `LBA': As a term describing disk capabilities
it means `Linear Block Addressing' (as opposed to CHS Addressing). As a term in the BIOS Setup, it
describes a translation scheme sometimes called `assisted LBA' - see above under ` The 8.4 GB limit '.

Something similar works when the firmware doesn't speak LBA but the BIOS knows about translation. (In the
setup this is often indicated as `Large'.) Now the BIOS will present a geometry (C,H,S) to the operating
system, and use (C',H',S') while talking to the disk controller. Usually S = S', C = C'/N and H = H'*N, where
N is the smallest power of two that will ensure C' <= 1024 (so that least capacity is wasted by the rounding
down in C' = C/N). Again, this allows access of up to 8.4 GB (7.8 GiB).

(The third setup option usually is `Normal', where no translation is involved.)

If a BIOS does not know about `Large' or `LBA', then there are software solutions around. Disk Managers like
OnTrack or EZ-Drive replace the BIOS disk handling routines by their own. Often this is accomplished by
having the disk manager code live in the MBR and subsequent sectors (OnTrack calls this code DDO:
Dynamic Drive Overlay), so that it is booted before any other operating system. That is why one may have
problems when booting from a floppy when a Disk Manager has been installed.

The effect is more or less the same as with a translating BIOS - but especially when running several different
operating systems on the same disk, disk managers can cause a lot of trouble.

Linux did support OnTrack Disk Manager since version 1.3.14, and EZ-Drive since version 1.3.29. Some
more details are given in the next section.

In 2.5.70 the automatic disk manager support was removed. Instead, two boot options were added:
"hda=remap" to do the EZ-Drive remapping of sector 0 to sector 1, and "hda=remap63" to do the OnTrack
Disk Manager shift over 63 sectors.

Large Disk HOWTO

Large Disk HOWTO 9

8. Kernel disk translation for IDE disks

If the Linux kernel detects the presence of some disk manager on an IDE disk, it will try to remap the disk in
the same way this disk manager would have done, so that Linux sees the same disk partitioning as for example
DOS with OnTrack or EZ-Drive. However, NO remapping is done when a geometry was specified on the
command line - so a `hd=cyls,heads,secs' command line option might well kill compatibility with a disk
manager.

If you are hit by this, and know someone who can compile a new kernel for you, find the file
linux/drivers/block/ide.c and remove in the routine ide_xlate_1024() the test if
(drive->forced_geom) { ...; return 0; }.

The remapping is done by trying 4, 8, 16, 32, 64, 128, 255 heads (keeping H*C constant) until either C <=
1024 or H = 255.

The details are as follows - subsection headers are the strings appearing in the corresponding boot messages.
Here and everywhere else in this text partition types are given in hexadecimal.

8.1 EZD

EZ-Drive is detected by the fact that the first primary partition has type 55. The geometry is remapped as
described above, and the partition table from sector 0 is discarded - instead the partition table is read from
sector 1. Disk block numbers are not changed, but writes to sector 0 are redirected to sector 1. This behaviour
can be changed by recompiling the kernel with #define FAKE_FDISK_FOR_EZDRIVE 0 in ide.c.

8.2 DM6:DDO

OnTrack DiskManager (on the first disk) is detected by the fact that the first primary partition has type 54.
The geometry is remapped as described above and the entire disk is shifted by 63 sectors (so that the old
sector 63 becomes sector 0). Afterwards a new MBR (with partition table) is read from the new sector 0. Of
course this shift is to make room for the DDO - that is why there is no shift on other disks.

8.3 DM6:AUX

OnTrack DiskManager (on other disks) is detected by the fact that the first primary partition has type 51 or 53.
The geometry is remapped as described above.

8.4 DM6:MBR

An older version of OnTrack DiskManager is detected not by partition type, but by signature. (Test whether
the offset found in bytes 2 and 3 of the MBR is not more than 430, and the short found at this offset equals
0x55AA, and is followed by an odd byte.) Again the geometry is remapped as above.

8.5 PTBL

Finally, there is a test that tries to deduce a translation from the start and end values of the primary
partitions: If some partition has start and end sector number 1 and 63, respectively, and end heads 31, 63, 127

Large Disk HOWTO

Large Disk HOWTO 10

or 254, then, since it is customary to end partitions on a cylinder boundary, and since moreover the IDE
interface uses at most 16 heads, it is conjectured that a BIOS translation is active, and the geometry is
remapped to use 32, 64, 128 or 255 heads, respectively. However, no remapping is done when the current idea
of the geometry already has 63 sectors per track and at least as many heads (since this probably means that a
remapping was done already).

8.6 Getting rid of a disk manager

When Linux detects OnTrack Disk Manager, it will shift all disk accesses by 63 sectors. Similarly, when
Linux detects EZ-Drive, it shifts all accesses of sector 0 to sector 1. This means that it may be difficult to get
rid of these disk managers. Most disk managers have an uninstall option, but if you need to remove some disk
manager an approach that often works is to give an explicit disk geometry on the command line. Now Linux
skips the ide_xlate_1024() routine, and one can wipe out the partition table with disk manager (and
probably lose access to all disk data) with the command

 dd if=/dev/zero of=/dev/hdx bs=512 count=1

The details depend a little on kernel version. Recent kernels (since 2.3.21) recognize boot parameters like
"hda=remap" and "hdb=noremap", so that it is possible to get or avoid the EZD shift regardless of the contents
of the partition table. The "hdX=noremap" boot parameter also avoids the OnTrack Disk Manager shift.

8.7 Since 2.5.70: boot parameters

In 2.5.70 the automatic disk manager support was removed. Instead, two boot options were added:
"hda=remap" to do the EZ-Drive remapping of sector 0 to sector 1, and "hda=remap63" to do the OnTrack
Disk Manager shift over 63 sectors.

This also means that it no longer is a problem to get rid of a disk manager.

9. Consequences

What does all of this mean? For Linux users only one thing: that they must make sure that LILO and fdisk
use the right geometry where `right' is defined for fdisk as the geometry used by the other operating
systems on the same disk, and for LILO as the geometry that will enable successful interaction with the BIOS
at boot time. (Usually these two coincide.)

How does fdisk know about the geometry? There are three sources of information. First, if the user has
specified the geometry interactively or on the command line, then we take the user input. Second, if it is
possible to guess the geometry used from the partition table, then we use that. Third, when nothing else is
available, fdisk asks the kernel, using the HDIO_GETGEO ioctl.

How does LILO know about the geometry? It asks the kernel, using the HDIO_GETGEO ioctl. But the user
can override the geometry using the `disk=' option in /etc/lilo.conf (see lilo.conf(5)). One may also
give the linear option to LILO, and it will store LBA addresses instead of CHS addresses in its map file,
and find out of the geometry to use at boot time (by using INT 13 Function 8 to ask for the drive geometry).

How does the kernel know what to answer? Well, first of all, the user may have specified an explicit geometry
with a `hda=cyls,heads,secs' kernel command line option (see bootparam(7)), perhaps by hand, or by asking
the boot loader to supply such an option to the kernel. For example, one can tell LILO to supply such an

Large Disk HOWTO

Large Disk HOWTO 11

option by adding an `append = "hda=cyls,heads,secs"' line in /etc/lilo.conf (see lilo.conf(5)).
And otherwise the kernel will guess, possibly using values obtained from the BIOS or the hardware.

Note that values guessed by the kernel are very unreliable. The kernel does not have a good way of finding
out what values the BIOS uses, or indeed whether the disk is known to the BIOS at all.

It is possible (since Linux 2.1.79) to change the kernel's ideas about the geometry by using the /proc
filesystem. For example

sfdisk -g /dev/hdc
/dev/hdc: 4441 cylinders, 255 heads, 63 sectors/track
cd /proc/ide/ide1/hdc
echo bios_cyl:17418 bios_head:128 bios_sect:32 > settings
sfdisk -g /dev/hdc
/dev/hdc: 17418 cylinders, 128 heads, 32 sectors/track
#

This is especially useful if you need so many boot parameters that you overflow LILO's (very limited)
command line length. (It also helps if you want to influence a utility that gets its idea of the geometry from the
kernel via the HDIO_GETGEO ioctl.)

Since Linux 2.6.5 the kernel will (when compiled with CONFIG_EDD) ask the BIOS for legacy_cylinders,
legacy_heads, legacy_sectors using INT 13/AH=08h. The values obtained are made available in
/sys/firmware/edd/int13_dev{80,81,82,83}/legacy_*. In 2.6.5 the files were
legacy_{cylinders,heads,sectors} (with contents in hex, e.g. 0xfe for 254), but those names are
confusing, and in 2.6.7 they were changed to legacy_max_cylinder, legacy_max_head,
legacy_sectors_per_track (with contents in decimal). A geometry like C/H/S=1000/255/63 is found
here as 999, 254, 63.

insmod edd.ko
cd /sys/firmware/edd/int13_dev83
cat legacy_max_head
254
cat sectors
120064896
#

Thus, we see here a disk with 255 heads and 120064896 sectors in all. Careful comparison shows that this is
/dev/hdf.

How does the BIOS know about the geometry? The user may have specified it in the CMOS setup. Or the
geometry is read from the disk, and possibly translated as specified in the setup. In the case of SCSI disks,
where no geometry exists, the geometry that the BIOS has to invent can often be specified by jumpers or setup
options. (For example, Adaptec controllers have the possibility to choose between the usual H=64, S=32 and
the `extended translation' H=255, S=63.) Sometimes the BIOS reads the partition table to see with what
geometry the disk was last partitioned - it will assume that a valid partition table is present when the 55aa
signature is present. This is good, in that it allows moving disks to a different machine. But having the BIOS
behaviour depend on the disk contents also causes strange problems. (For example, it has been reported that a
2.5 GB disk was seen as having 528 MB because the BIOS read the partition table and concluded that it
should use untranslated CHS. Another effect is found in the report that unpartitioned disks were slower than
partitioned ones, because the BIOS tested 32-bit mode by reading the MBR and seeing whether it correctly
got the 55aa signature.)

Large Disk HOWTO

Large Disk HOWTO 12

How does the disk know about the geometry? Well, the manufacturer invents a geometry that multiplies out to
approximately the right capacity. Many disks have jumpers that change the reported geometry, in order to
avoid BIOS bugs. For example, all IBM disks allow the user to choose between 15 and 16 heads, and many
manufacturers add jumpers to make the disk seem smaller than 2.1 GB or 33.8 GB. See also below.
Sometimes there are utilities that change the disk firmware.

9.1 Computing LILO parameters

Sometimes it is useful to force a certain geometry by adding `hda=cyls,heads,secs' on the kernel command
line. Almost always one wants secs=63, and the purpose of adding this is to specify heads. (Reasonable values
today are heads=16 and heads=255.) What should one specify for cyls? Precisely that number that will give
the right total capacity of C*H*S sectors. For example, for a drive with 71346240 sectors (36529274880
bytes) one would compute C as 71346240/(255*63)=4441 (for example using the program bc), and give boot
parameter hdc=4441,255,63. How does one know the right total capacity? For example,

hdparm -g /dev/hdc | grep sectors
 geometry = 4441/255/63, sectors = 71346240, start = 0
hdparm -i /dev/hdc | grep LBAsects
 CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=71346240

gives two ways of finding the total number of sectors 71346240. Recent kernels also give the precise size in
the boot messages:

dmesg | grep hde
hde: Maxtor 93652U8, ATA DISK drive
hde: 71346240 sectors (36529 MB) w/2048KiB Cache, CHS=70780/16/63
 hde: hde1 hde2 hde3 < hde5 > hde4
 hde2: <bsd: hde6 hde7 hde8 hde9 >

Older kernels only give MB and CHS. In general the CHS value is rounded down, so that the above output
tells us that there are at least 70780*16*63=71346240 sectors. In this example that happens to be the precise
value. The MB value may be rounded instead of truncated, and in old kernels may be `binary' (MiB) instead
of decimal. Note the agreement between the kernel size in MB and the Maxtor model number. Also in the
case of SCSI disks the precise number of sectors is given in the kernel boot messages:

SCSI device sda: 17755792 512-byte hdwr sectors (9091 MB)

10. Details

10.1 IDE details - the seven geometries

The IDE driver has five sources of information about the geometry. The first (G_user) is the one specified by
the user on the command line. The second (G_bios) is the BIOS Fixed Disk Parameter Table (for first and
second disk only) that is read on system startup, before the switch to 32-bit mode. The third (G_phys) and
fourth (G_log) are returned by the IDE controller as a response to the IDENTIFY command - they are the
`physical' and `current logical' geometries.

On the other hand, the driver needs two values for the geometry: on the one hand G_fdisk, returned by a
HDIO_GETGEO ioctl, and on the other hand G_used, which is actually used for doing I/O. Both G_fdisk and
G_used are initialized to G_user if given, to G_bios when this information is present according to CMOS, and
to G_phys otherwise. If G_log looks reasonable then G_used is set to that. Otherwise, if G_used is

Large Disk HOWTO

Large Disk HOWTO 13

unreasonable and G_phys looks reasonable then G_used is set to G_phys. Here `reasonable' means that the
number of heads is in the range 1-16.

To say this in other words: the command line overrides the BIOS, and will determine what fdisk sees, but if
it specifies a translated geometry (with more than 16 heads), then for kernel I/O it will be overridden by
output of the IDENTIFY command.

Note that G_bios is rather unreliable: for systems booting from SCSI the first and second disk may well be
SCSI disks, and the geometry that the BIOS reported for sda is used by the kernel for hda. Moreover, disks
that are not mentioned in the BIOS Setup are not seen by the BIOS. This means that, e.g., in an IDE-only
system where hdb is not given in the Setup, the geometries reported by the BIOS for the first and second disk
will apply to hda and hdc.

In order to avoid such confusion, since Linux 2.5.51 G_bios is not used anymore.

The IDENTIFY DRIVE command

When an IDE drive is sent the IDENTIFY DRIVE (0xec) command, it will return 256 words (512 bytes) of
information. This contains lots of technical stuff. Let us only describe here what plays a role in geometry
matters. The words are numbered 0-255.

We find four pieces of information here: DefaultCHS (words 1,3,6), CurrentCHS (words 54-58) and
LBAcapacity (words 60-61) and 48-bit capacity (words 100-103).

Description Example

0 bit field: bit 6: fixed disk, bit 7: removable medium 0x0040

1 Default number of cylinders 16383
3 Default number of heads 16
6 Default number of sectors per track 63

10-19 Serial number (in ASCII) G8067TME
23-26 Firmware revision (in ASCII) GAK&1B0

27-46 Model name (in ASCII) Maxtor
4G160J8

49 bit field: bit 9: LBA supported 0x2f00

53 bit field: bit 0: words 54-58 are valid 0x0007
54 Current number of cylinders 16383
55 Current number of heads 16
56 Current number of sectors per track 63
57-58 Current LBA capacity 16514064

60-61 Default LBA capacity 268435455

82-83 Command sets supported 7c69 4f09

85-86 Command sets enabled 7c68 0e01

100-103 Maximum user LBA for 48-bit addressing 320173056

Large Disk HOWTO

Large Disk HOWTO 14

255 Checksum and signature (0xa5) 0x44a5

In the ASCII strings each word contains two characters, the high order byte the first, the low order byte the
second. The 32-bit values are given with low order word first. Words 54-58 are set by the command
INITIALIZE DRIVE PARAMETERS (0x91). They are significant only when CHS addressing is used, but
may help to find the actual disk size in case the disk sets DefaultCHS to 4092/16/63 in order to avoid BIOS
problems.

Sometimes, when a jumper causes a big drive to misreport LBAcapacity (often to 66055248 sectors, in order
to stay below the 33.8 GB limit), one needs a fourth piece of information to find the actual disk size, namely
the result of the READ NATIVE MAX ADDRESS (0xf8) command.

10.2 SCSI details

The situation for SCSI is slightly different, as the SCSI commands already use logical block numbers, so a
`geometry' is entirely irrelevant for actual I/O. However, the format of the partition table is still the same, so
fdisk has to invent some geometry, and also uses HDIO_GETGEO here - indeed, fdisk does not
distinguish between IDE and SCSI disks. As one can see from the detailed description below, the various
drivers each invent a somewhat different geometry. Indeed, one big mess.

If you are not using DOS or so, then avoid all extended translation settings, and just use 64 heads, 32 sectors
per track (for a nice, convenient 1 MiB per cylinder), if possible, so that no problems arise when you move the
disk from one controller to another. Some SCSI disk drivers (aha152x, pas16, ppa, qlogicfas, qlogicisp) are so
nervous about DOS compatibility that they will not allow a Linux-only system to use more than about 8 GiB.
This is a bug.

What is the real geometry? The easiest answer is that there is no such thing. And if there were, you wouldn't
want to know, and certainly NEVER, EVER tell fdisk or LILO or the kernel about it. It is strictly a business
between the SCSI controller and the disk. Let me repeat that: only silly people tell fdisk/LILO/kernel about
the true SCSI disk geometry.

But if you are curious and insist, you might ask the disk itself. There is the important command READ
CAPACITY that will give the total size of the disk, and there is the MODE SENSE command, that in the
Rigid Disk Drive Geometry Page (page 04) gives the number of cylinders and heads (this is information that
cannot be changed), and in the Format Page (page 03) gives the number of bytes per sector, and sectors per
track. This latter number is typically dependent upon the notch, and the number of sectors per track varies -
the outer tracks have more sectors than the inner tracks. The Linux program scsiinfo will give this
information. There are many details and complications, and it is clear that nobody (probably not even the
operating system) wants to use this information. Moreover, as long as we are only concerned about fdisk
and LILO, one typically gets answers like C/H/S=4476/27/171 - values that cannot be used by fdisk
because the partition table reserves only 10 resp. 8 resp. 6 bits for C/H/S.

Then where does the kernel HDIO_GETGEO get its information from? Well, either from the SCSI controller,
or by making an educated guess. Some drivers seem to think that we want to know `reality', but of course we
only want to know what the DOS or OS/2 FDISK (or Adaptec AFDISK, etc) will use.

Large Disk HOWTO

Large Disk HOWTO 15

Note that Linux fdisk needs the numbers H and S of heads and sectors per track to convert LBA sector
numbers into c/h/s addresses, but the number C of cylinders does not play a role in this conversion. Some
drivers use (C,H,S) = (1023,255,63) to signal that the drive capacity is at least 1023*255*63 sectors. This is
unfortunate, since it does not reveal the actual size, and will limit the users of most fdisk versions to about 8
GiB of their disks - a real limitation in these days.

In the description below, M denotes the total disk capacity, and C, H, S the number of cylinders, heads and
sectors per track. It suffices to give H, S if we regard C as defined by M / (H*S).

By default, H=64, S=32.

aha1740, dtc, g_NCR5380, t128, wd7000:
H=64, S=32.

aha152x, pas16, ppa, qlogicfas, qlogicisp:
H=64, S=32 unless C > 1024, in which case H=255, S=63, C = min(1023, M/(H*S)). (Thus C is
truncated, and H*S*C is not an approximation to the disk capacity M. This will confuse most
versions of fdisk.) The ppa.c code uses M+1 instead of M and says that due to a bug in sd.c M
is off by 1.

advansys:
H=64, S=32 unless C > 1024 and moreover the `> 1 GB' option in the BIOS is enabled, in which case
H=255, S=63.

aha1542:
Ask the controller which of two possible translation schemes is in use, and use either H=255, S=63 or
H=64, S=32. In the former case there is a boot message "aha1542.c: Using extended bios translation".

aic7xxx:
H=64, S=32 unless C > 1024, and moreover either the "extended" boot parameter was given, or the
`extended' bit was set in the SEEPROM or BIOS, in which case H=255, S=63. In Linux 2.0.36 this
extended translation would always be set in case no SEEPROM was found, but in Linux 2.2.6 if no
SEEPROM is found extended translation is set only when the user asked for it using this boot
parameter (while when a SEEPROM is found, the boot parameter is ignored). This means that a setup
that works under 2.0.36 may fail to boot with 2.2.6 (and require the linear keyword for LILO, or
the aic7xxx=extended kernel boot parameter).

buslogic:
H=64, S=32 unless C >= 1024, and moreover extended translation was enabled on the controller, in
which case if M < 2^22 then H=128, S=32; otherwise H=255, S=63. However, after making this
choice for (C,H,S), the partition table is read, and if for one of the three possibilities (H,S) = (64,32),
(128,32), (255,63) the value endH=H-1 is seen somewhere then that pair (H,S) is used, and a boot
message is printed "Adopting Geometry from Partition Table".

fdomain:
Find the geometry information in the BIOS Drive Parameter Table, or read the partition table and use
H=endH+1, S=endS for the first partition, provided it is nonempty, or use H=64, S=32 for M < 2^21
(1 GiB), H=128, S=63 for M < 63*2^17 (3.9 GiB) and H=255, S=63 otherwise.

in2000:
Use the first of (H,S) = (64,32), (64,63), (128,63), (255,63) that will make C <= 1024. In the last case,
truncate C at 1023.

seagate:
Read C,H,S from the disk. (Horrors!) If C or S is too large, then put S=17, H=2 and double H until C
<= 1024. This means that H will be set to 0 if M > 128*1024*17 (1.1 GiB). This is a bug.

ultrastor and u14_34f:
One of three mappings ((H,S) = (16,63), (64,32), (64,63)) is used depending on the controller
mapping mode.

Large Disk HOWTO

Large Disk HOWTO 16

If the driver does not specify the geometry, we fall back on an educated guess using the partition table, or
using the total disk capacity.

Look at the partition table. Since by convention partitions end on a cylinder boundary, we can, given end =
(endC,endH,endS) for any partition, just put H = endH+1 and S = endS. (Recall that sectors are
counted from 1.) More precisely, the following is done. If there is a nonempty partition, pick the partition with
the largest beginC. For that partition, look at end+1, computed both by adding start and length and by
assuming that this partition ends on a cylinder boundary. If both values agree, or if endC = 1023 and
start+length is an integral multiple of (endH+1)*endS, then assume that this partition really was
aligned on a cylinder boundary, and put H = endH+1 and S = endS. If this fails, either because there are no
partitions, or because they have strange sizes, then look only at the disk capacity M. Algorithm: put H =
M/(62*1024) (rounded up), S = M/(1024*H) (rounded up), C = M/(H*S) (rounded down). This has the effect
of producing a (C,H,S) with C at most 1024 and S at most 62.

11. Clipped disks

11.1 The Linux IDE 8 GiB limit

The Linux IDE driver gets the geometry and capacity of a disk (and lots of other stuff) by using an ATA
IDENTIFY request. Linux kernels older than 2.0.34/2.1.90 would not believe the returned value of
lba_capacity if it was more than 10% larger than the capacity computed by C*H*S. However, by industry
agreement large IDE disks (with more than 16514064 sectors) return C=16383, H=16, S=63, for a total of
16514064 sectors (7.8 GB) independent of their actual size, but give their actual size in lba_capacity.

Since versions 2.0.34/2.1.90, Linux kernels know about this and do the right thing. If you have an older Linux
kernel and do not want to upgrade, and this kernel only sees 8 GiB of a much larger disk, then try changing
the routine lba_capacity_is_ok in /usr/src/linux/drivers/block/ide.c into something
like

static int lba_capacity_is_ok (struct hd_driveid *id) {
 id->cyls = id->lba_capacity / (id->heads * id->sectors);
 return 1;
}

For a more cautious patch, see 2.1.90.

11.2 BIOS complications

As just mentioned, large disks return the geometry C=16383, H=16, S=63 independent of the actual size,
while the actual size is returned in the value of LBAcapacity. Some BIOSes do not recognize this, and
translate this 16383/16/63 into something with fewer cylinders and more heads, for example 1024/255/63 or
1027/255/63. So, the kernel must not only recognize the single geometry 16383/16/63, but also all
BIOS-mangled versions of it. Since 2.2.2 this is done correctly (by taking the BIOS idea of H and S, and
computing C = capacity/(H*S)). Usually this problem is solved by setting the disk to Normal in the BIOS
setup (or, even better, to None, not mentioning it at all to the BIOS). If that is impossible because you have to
boot from it or use it also with DOS/Windows, and upgrading to 2.2.2 or later is not an option, use kernel boot
parameters.

If a BIOS reports 16320/16/63, then this is usually done in order to get 1024/255/63 after translation.

Large Disk HOWTO

Large Disk HOWTO 17

There is an additional problem here. If the disk was partitioned using a geometry translation, then the kernel
may at boot time see this geometry used in the partition table, and report hda: [PTBL]
[1027/255/63]. This is bad, because now the disk is only 8.4 GB. This was fixed in 2.3.21. Again, kernel
boot parameters will help.

11.3 Jumpers that select the number of heads

Many disks have jumpers that allow you to choose between a 15-head an a 16-head geometry. The default
settings will give you a 16-head disk. Sometimes both geometries address the same number of sectors,
sometimes the 15-head version is smaller. There may be a good reason for this setup: Petri Kaukasoina writes:
`A 10.1 Gig IBM Deskstar 16 GP (model IBM-DTTA-351010) was jumpered for 16 heads as default but this
old PC (with AMI BIOS) didn't boot and I had to jumper it for 15 heads. hdparm -i tells
RawCHS=16383/15/63 and LBAsects=19807200. I use 20960/15/63 to get the full capacity.' For the jumper
settings, see http://www.hitachigst.com/hdd/support/jumpers.htm.

11.4 Jumpers that clip total capacity

Many disks have jumpers that allow you to make the disk appear smaller than it is. A silly thing to do, and
probably no Linux user ever wants to use this, but some BIOSes crash on big disks. The usual solution is to
keep the disk entirely out of the BIOS setup. But this may be feasible only if the disk is not your boot disk.

Clip to 2.1 GB

The first serious limit was the 4096 cylinder limit (that is, with 16 heads and 63 sectors/track, 2.11 GB). For
example, a Fujitsu MPB3032ATU 3.24 GB disk has default geometry 6704/15/63, but can be jumpered to
appear as 4092/16/63, and then reports LBAcapacity 4124736 sectors, so that the operating system cannot
guess that it is larger in reality. In such a case (with a BIOS that crashes if it hears how big the disk is in
reality, so that the jumper is required) one needs boot parameters to tell Linux about the size of the disk.

That is unfortunate. Most disks can be jumpered so as to appear as a 2 GB disk and then report a clipped
geometry like 4092/16/63 or 4096/16/63, but still report full LBAcapacity. Such disks will work well, and use
full capacity under Linux, regardless of jumper settings.

Clip to 33 GB

A more recent limit is the 33.8 GB limit. Linux kernels older than 2.2.14 / 2.3.21 need a patch to be able to
cope with IDE disks larger than this.

With an old BIOS and a disk larger than 33.8 GB, the BIOS may hang, and in such cases booting may be
impossible, even when the disk is removed from the CMOS settings.

Therefore, large IBM and Maxtor and Seagate disks come with a jumper that make the disk appear as a 33.8
GB disk. For example, the IBM Deskstar 37.5 GB (DPTA-353750) with 73261440 sectors (corresponding to
72680/16/63, or 4560/255/63) can be jumpered to appear as a 33.8 GB disk, and then reports geometry
16383/16/63 like any big disk, but LBAcapacity 66055248 (corresponding to 65531/16/63, or 4111/255/63).
Similar things hold for recent large Maxtor disks.

Below some more details that used to be relevant but probably can be ignored now.

Large Disk HOWTO

Large Disk HOWTO 18

Maxtor

With the jumper present, both the geometry (16383/16/63) and the size (66055248) are conventional and give
no information about the actual size. Moreover, attempts to access sector 66055248 and above yield I/O
errors. However, on Maxtor drives the actual size can be found and made accessible using the READ
NATIVE MAX ADDRESS and SET MAX ADDRESS commands. Presumably this is what
MaxBlast/EZ-Drive does. There is a small Linux utility setmax.c that does the same. Only very few disks
need it - almost always CONFIG_IDEDISK_STROKE does the trick.

For drives larger than 137 GB also READ NATIVE MAX ADDRESS returns a conventional value, namely
0xfffffff, corresponding to 137 GB. Here READ NATIVE MAX ADDRESS EXT and SET MAX ADDRESS
EXT (using 48-bit addressing) are required. The setmax utility does not yet know about this. A very small
patch makes 2.5.3 handle this situation.

Early large Maxtor disks have an additional detail: the J46 jumper for these 34-40 GB disks changes the
geometry from 16383/16/63 to 4092/16/63 and does not change the reported LBAcapacity. This means that
also with jumper present the BIOS (old Award 4.5*) will hang at boot time. For this case Maxtor provides a
utility JUMPON.EXE that upgrades the firmware to make J46 behave as described above.

On recent Maxtor drives the call setmax -d 0 /dev/hdX will give you max capacity again. However,
on slightly older drives a firmware bug does not allow you to use -d 0, and setmax -d 255 /dev/hdX
returns you to almost full capacity. For Maxtor D540X-4K, see below.

IBM

For IBM things are worse: the jumper really clips capacity and there is no software way to get it back. The
solution is not to use the jumper but use setmax -m 66055248 /dev/hdX to software-clip the disk.
"How?" you say - "I cannot boot!". IBM gives the tip: If a system with Award BIOS hangs during drive
detection: Reboot the system and hold the F4 key to bypass autodetection of the drive(s). If this doesn't help,
find a different computer, connect the drive to it, and run setmax there. After doing this you go back to the
first machine and are in the same situation as with jumpered Maxtor disks: booting works, and after getting
past the BIOS either a patched kernel or a setmax -d 0 gets you full capacity.

Thomas Charbonnel reports on a different approach: "I had a 80 GB IBM IC35L080AVVA07-0 drive and
installed IBM's Disk Manager. Installed my boot loader on the drive's MBR. Everything worked fine. Note
that the IDE drive must become the boot drive so that one can install only one 34+ GB drive using this
approach."

Seagate

Seagate disks have a jumper that will clip the reported number of cylinders to 4092 on drives smaller than
33.8 GB, while it will limit the reported LBA capacity (Identify words 60/61) to 33.8 GB on larger disks.

For models ST-340810A, ST-360020A, ST-380020A: The ATA Read Native Max and Set Max commands
may be used to reset the true full capacity.

For models ST-340016A, ST-340823A, ST-340824A, ST-360021A, ST-380021A: The ATA Set Features F1
sub-command will cause Identify Data words 60-61 to report the true full capacity.

Large Disk HOWTO

Large Disk HOWTO 19

Maxtor D540X-4K

The Maxtor Diamond Max drives 4K080H4, 4K060H3, 4K040H2 (aka D540X-4K) are identical to the drives
4D080H4, 4D060H3, 4D040H2 (aka D540X-4D), except that the jumper settings differ. A Maxtor FAQ
specifies the Master/Slave/CableSelect settings for them, but the capacity clip jumper for the "4K" drives
seems to be undocumented. Nils Ohlmeier reports that he experimentally finds that it is the J42 jumper
("reserved for factory use") closest to the power connector. (The "4D" drives use the J46 jumper, like all other
Maxtor drives.)

However, it may be that this undocumented jumper acts like the IBM jumper: the machine boots correctly, but
the disk has been clipped to 33 GB and setmax -d 0 does not help to get full capacity back. And the IBM
solution works: do not use any disk-clipping jumpers, but first put the disk in a machine with non-broken
BIOS, soft-clip it with setmax -m 66055248 /dev/hdX, then put it back in the first machine, and after
booting run setmax -d 0 /dev/hdX to get full capacity again.

In the meantime, some docs and pictures have appeared on the Maxtor site, confirming part of the above.
Compare

Western Digital

Some info, including the settings for capacity-clipping jumpers, is given on the Western Digital site. I do not
know what precisely these jumpers do.

11.5 READ NATIVE MAX ADDRESS / SET MAX ADDRESS

If an IDE/ATA disk has support for the Host Protected Area (HPA) feature set, then it is possible to set the
LBA capacity to any value below the actual capacity. Access past the assigned point usually leads to I/O
errors. Since classical software finds out about the disk size by looking at the LBA capacity field of the
Identify information, such software will not suspect that the disk actually is larger.

The actual total size of the disk is read using the READ NATIVE MAX ADDRESS command. This "soft disk
size" is set using the SET MAX ADDRESS command. It comes in two flavours: if the "volatile" bit is set, the
command will have effect until the next reboot or hardware reset; otherwise the effect is permanent. It is
possible to protect settings with a password. (For details, see the ATA standard.)

This clipped size has (at least) two applications: on the one hand it is possible to fake a smaller disk, so that
the BIOS will not have problems, and have Linux, or (for DOS/Windows) a disk manager restore total size;

Large Disk HOWTO

Large Disk HOWTO 20

on the other hand one can have a vendor area at the end, inaccessible to the ordinary user.

For many of the disks discussed above, setting a jumper has precisely this effect: LBA capacity is diminished
while the native max capacity remains the same, and the SET MAX ADDRESS will restore full capacity.

11.6 CONFIG_IDEDISK_STROKE

The CONFIG_IDEDISK_STROKE option of Linux 2.4.19/2.5.3 and later, will tell Linux to read the native
max capacity and do a SET MAX ADDRESS to get access to full capacity. This configuration option lives
under the heading "Auto-Geometry Resizing support" in the "IDE, ATA and ATAPI block devices" kernel
configuration section.

The configuration option went away in 2.6.7 and was replaced by a (per-disk) boot parameter, so that one can
say "hda=stroke".

With this "stroke" option jumpered disks will in many cases be handled correctly, i.e., be seen with full
capacity (in spite of the jumper). And the same holds when the disk got a Host Protected Area in some other
(non-jumper) way.

This is the preferred way to handle disks that need a jumper because of a broken BIOS.

12. The Linux 65535 cylinder limit

The HDIO_GETGEO ioctl returns the number of cylinders in a short. This means that if you have more than
65535 cylinders, the number is truncated, and (for a typical SCSI setup with 1 MiB cylinders) a 80 GiB disk
may appear as a 16 GiB one. Once one recognizes what the problem is, it is easily avoided. Use fdisk 2.10i or
newer.

(The programming convention is to use the BLKGETSIZE ioctl to get total size, and HDIO_GETGEO to get
number of heads and sectors/track, and, if needed, get C by C = size/(H*S).)

12.1 IDE problems with 34+ GB disks

(Below a discussion of Linux kernel problems. BIOS problems and jumpers that clip capacity were discussed
above.)

Drives larger than 33.8 GB will not work with kernels older than 2.0.39 / 2.2.14 / 2.3.21. The details are as
follows. Suppose you bought a new IBM-DPTA-373420 disk with a capacity of 66835440 sectors (34.2 GB).
Pre-2.3.21 kernels will tell you that the size is 769*16*63 = 775152 sectors (0.4 GB), which is a bit
disappointing. And giving command line parameters hdc=4160,255,63 doesn't help at all - these are just
ignored. What happens? The routine idedisk_setup() retrieves the geometry reported by the disk (which is
16383/16/63) and overwrites what the user specified on the command line, so that the user data is used only
for the BIOS geometry. The routine current_capacity() or idedisk_capacity() recomputes the cylinder number
as 66835440/(16*63)=66305, but since this is stored in a short, it becomes 769. Since lba_capacity_is_ok()
destroyed id->cyls, every following call to it will return false, so that the disk capacity becomes 769*16*63.
For several kernels a patch is available. A patch for 2.0.38 can be found at ftp.kernel.org. A patch for 2.2.12
can be found at www.uwsg.indiana.edu (some editing may be required to get rid of the html markup). The
2.2.14 kernels do support these disks. In the 2.3.* kernel series, there is support for these disks since 2.3.21.
One can also `solve' the problem in hardware by using a jumper to clip the size to 33.8 GB. In many cases a

Large Disk HOWTO

Large Disk HOWTO 21

BIOS upgrade will be required if one wants to boot from the disk.

13. Extended and logical partitions

Above, we saw the structure of the MBR (sector 0): boot loader code followed by 4 partition table entries of
16 bytes each, followed by an AA55 signature. Partition table entries of type 5 or F or 85 (hex) have a special
significance: they describe extended partitions: blobs of space that are further partitioned into logical
partitions. (So, an extended partition is only a box, it cannot be used itself, one uses the logical partitions
inside.) Only the location of the first sector of an extended partition is important. This first sector contains a
partition table with four entries: one a logical partition, one an extended partition, and two unused. In this way
one gets a chain of partition table sectors, scattered over the disk, where the first one describes three primary
partitions and the extended partition, and each following partition table sector describes one logical partition
and the location of the next partition table sector.

It is important to understand this: When people do something stupid while partitioning a disk, they want to
know: Is my data still there? And the answer is usually: Yes. But if logical partitions were created then the
partition table sectors describing them are written at the beginning of these logical partitions, and data that
was there before is lost.

The program sfdisk will show the full chain. E.g.,

sfdisk -l -x /dev/hda

Disk /dev/hda: 16 heads, 63 sectors, 33483 cylinders
Units = cylinders of 516096 bytes, blocks of 1024 bytes, counting from 0

 Device Boot Start End #cyls #blocks Id System
/dev/hda1 0+ 101 102- 51376+ 83 Linux
/dev/hda2 102 2133 2032 1024128 83 Linux
/dev/hda3 2134 33482 31349 15799896 5 Extended
/dev/hda4 0 - 0 0 0 Empty

/dev/hda5 2134+ 6197 4064- 2048224+ 83 Linux
 - 6198 10261 4064 2048256 5 Extended
 - 2134 2133 0 0 0 Empty
 - 2134 2133 0 0 0 Empty

/dev/hda6 6198+ 10261 4064- 2048224+ 83 Linux
 - 10262 16357 6096 3072384 5 Extended
 - 6198 6197 0 0 0 Empty
 - 6198 6197 0 0 0 Empty
...
/dev/hda10 30581+ 33482 2902- 1462576+ 83 Linux
 - 30581 30580 0 0 0 Empty
 - 30581 30580 0 0 0 Empty
 - 30581 30580 0 0 0 Empty

#

It is possible to construct bad partition tables. Many kernels get into a loop if some extended partition points
back to itself or to an earlier partition in the chain. It is possible to have two extended partitions in one of
these partition table sectors so that the partition table chain forks. (This can happen for example with an fdisk
that does not recognize each of 5, F, 85 as an extended partition, and creates a 5 next to an F.) No standard
fdisk type program can handle such situations, and some handwork is required to repair them. The Linux
kernel will accept a fork at the outermost level. That is, you can have two chains of logical partitions.

Large Disk HOWTO

Large Disk HOWTO 22

Sometimes this is useful - for example, one can use type 5 and be seen by DOS, and the other type 85,
invisible for DOS, so that DOS FDISK will not crash because of logical partitions past cylinder 1024. Usually
one needs sfdisk to create such a setup.

14. Problem solving

Many people think they have problems, while in fact nothing is wrong. Or, they think that the problems they
have are due to disk geometry, while in fact disk geometry has nothing to do with the matter. All of the above
may have sounded complicated, but disk geometry handling is extremely easy: do nothing at all, and all is
fine; or perhaps give LILO the keyword lba32 if it doesn't get past `LI' when booting. Watch the kernel boot
messages, and remember: the more you fiddle with geometries (specifying heads and cylinders to LILO and
fdisk and on the kernel command line) the less likely it is that things will work. Roughly speaking, all is fine
by default.

And remember: nowhere in Linux is disk geometry used, so no problem you have while running Linux can be
caused by disk geometry. Indeed, disk geometry is used only by LILO and by fdisk. So, if LILO fails to boot
the kernel, that may be a geometry problem. If different operating systems do not understand the partition
table, that may be a geometry problem. Nothing else. In particular, if mount doesnt seem to work, never worry
about disk geometry - the problem is elsewhere.

14.1 Problem: My IDE disk gets a bad geometry when I boot
from SCSI.

It is quite possible that a disk gets the wrong geometry. The Linux kernel asks the BIOS about hd0 and hd1
(the BIOS drives numbered 80H and 81H) and assumes that this data is for hda and hdb. But on a system that
boots from SCSI, the first two disks may well be SCSI disks, and thus it may happen that the fifth disk, which
is the first IDE disk hda, gets assigned a geometry belonging to sda. Such things are easily solved by giving
boot parameters `hda=C,H,S' for the appropriate numbers C, H and S, either at boot time or in /etc/lilo.conf.

Since Linux 2.5.51 this BIOS information is not used anymore, and the same problem occurs for all disks. See
below.

14.2 Nonproblem: Identical disks have different geometry?

`I have two identical 10 GB IBM disks. However, fdisk gives different sizes for them. Look:

fdisk -l /dev/hdb
Disk /dev/hdb: 255 heads, 63 sectors, 1232 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hdb1 1 1232 9896008+ 83 Linux native
fdisk -l /dev/hdd
Disk /dev/hdd: 16 heads, 63 sectors, 19650 cylinders
Units = cylinders of 1008 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hdd1 1 19650 9903568+ 83 Linux native

How come?'

Large Disk HOWTO

Large Disk HOWTO 23

What is happening here? Well, first of all these drives really are 10gig: hdb has size 255*63*1232*512 =
10133544960, and hdd has size 16*63*19650*512 = 10141286400, so, nothing is wrong and the kernel sees
both as 10.1 GB. Why the difference in size? That is because the kernel gets data for the first two IDE disks
from the BIOS, and the BIOS has remapped hdb to have 255 heads (and 16*19650/255=1232 cylinders). The
rounding down here costs almost 8 MB.

If you would like to remap hdd in the same way, give the kernel boot parameters `hdd=1232,255,63'.

On the other hand, if the disk is not shared with DOS or so, it may be better to set hdb to Normal in the BIOS
setup, instead of asking for some translation like LBA.

Since Linux 2.5.51, the IDE driver no longer uses BIOS info on the first two disks, and the different treatment
of the first two disks has disappeared.

14.3 Problem: 2.4 and 2.6 report different geometries? 2.6
reports the wrong geometry? 2.6 reports no geometry at
all?

Since geometry does not exist, it is not surprising that each of 2.0/2.2/2.4/2.6 reports a somewhat different
disk geometry.

Some people will maintain that geometry *does* exist, and in that case do not mean a property of the disk, but
mean the values reported by the BIOS. That is what several other operating systems will use. Since Linux
2.5.51, the kernel no longer uses the values reported by the BIOS - it is difficult to match BIOS device
numbers with Linux disk names, maybe data is only available for two disks, maybe some disks are not present
in the BIOS setup, etc. However, if one needs these values, since Linux 2.6.5 one can set CONFIG_EDD and
mount sysfs, and then find the BIOS data for the various disks under
/sys/firmware/edd/int13_dev*. Now the matching of BIOS numbers, represented in directory
names like int13_dev82, with Linux names like sda can be done by user space software, possibly with
help from the user.

This 2.5.51 change caused problems when many people using both Linux and Windows on the same disk
upgraded from 2.4 to 2.6 and used as partitioning tool the program parted that had not yet been updated. I
have not checked whether current parted is OK.

14.4 Nonproblem: fdisk sees much more room than df?

fdisk will tell you how many blocks there are on the disk. If you make a filesystem on the disk, say with
mke2fs, then this filesystem needs some space for bookkeeping - typically something like 4% of the
filesystem size, more if you ask for a lot of inodes during mke2fs. For example:

sfdisk -s /dev/hda9
4095976
mke2fs -i 1024 /dev/hda9
mke2fs 1.12, 9-Jul-98 for EXT2 FS 0.5b, 95/08/09
...
204798 blocks (5.00%) reserved for the super user
...
mount /dev/hda9 /somewhere
df /somewhere

Large Disk HOWTO

Large Disk HOWTO 24

Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda9 3574475 13 3369664 0% /mnt
df -i /somewhere
Filesystem Inodes IUsed IFree %IUsed Mounted on
/dev/hda9 4096000 11 4095989 0% /mnt
#

We have a partition with 4095976 blocks, make an ext2 filesystem on it, mount it somewhere and find that it
only has 3574475 blocks - 521501 blocks (12%) was lost to inodes and other bookkeeping. Note that the
difference between the total 3574475 and the 3369664 available to the user are the 13 blocks in use plus the
204798 blocks reserved for root. This latter number can be changed by tune2fs. This `-i 1024' is only
reasonable for news spools and the like, with lots and lots of small files. The default would be:

mke2fs /dev/hda9
mount /dev/hda9 /somewhere
df /somewhere
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda9 3958475 13 3753664 0% /mnt
df -i /somewhere
Filesystem Inodes IUsed IFree %IUsed Mounted on
/dev/hda9 1024000 11 1023989 0% /mnt
#

Now only 137501 blocks (3.3%) are used for inodes, so that we have 384 MB more than before. (Apparently,
each inode takes 128 bytes.) On the other hand, this filesystem can have at most 1024000 files (more than
enough), against 4096000 (too much) earlier.

Large Disk HOWTO

Large Disk HOWTO 25

	Table of Contents
	Large Disk HOWTO
	Andries Brouwer, aeb@cwi.nl
	1. Large disks
	 2. Units
	3. Disk Access
	3.1 Cylinders, heads and sectors
	3.2 Sectorsize
	3.3 Disksize
	3.4 The 1024 cylinder and 8.5 GB limits
	3.5 The 137 GB limit
	4. History of BIOS and IDE limits
	5. Booting
	 5.1 LILO and the `lba32' and `linear' options
	5.2 A LILO bug
	5.3 1024 cylinders is not 1024 cylinders
	5.4 No 1024 cylinder limit on old machines with IDE
	5.5 Other boot loaders
	 6. Disk geometry, partitions and `overlap'
	6.1 The last cylinder
	6.2 Cylinder boundaries
	7. Translation and Disk Managers
	8. Kernel disk translation for IDE disks
	8.1 EZD
	8.2 DM6:DDO
	8.3 DM6:AUX
	8.4 DM6:MBR
	8.5 PTBL
	8.6 Getting rid of a disk manager
	8.7 Since 2.5.70: boot parameters
	9. Consequences
	9.1 Computing LILO parameters
	10. Details
	10.1 IDE details - the seven geometries
	 The IDENTIFY DRIVE command

	10.2 SCSI details
	11. Clipped disks
	11.1 The Linux IDE 8 GiB limit
	11.2 BIOS complications
	 11.3 Jumpers that select the number of heads
	11.4 Jumpers that clip total capacity
	Clip to 2.1 GB
	 Clip to 33 GB
	Maxtor
	IBM
	Seagate
	Maxtor D540X-4K
	Western Digital

	11.5 READ NATIVE MAX ADDRESS / SET MAX ADDRESS
	11.6 CONFIG_IDEDISK_STROKE
	12. The Linux 65535 cylinder limit
	 12.1 IDE problems with 34+ GB disks
	13. Extended and logical partitions
	14. Problem solving
	14.1 Problem: My IDE disk gets a bad geometry when I boot from SCSI.
	14.2 Nonproblem: Identical disks have different geometry?
	14.3 Problem: 2.4 and 2.6 report different geometries? 2.6 reports the wrong geometry? 2.6 reports no geometry at all?
	14.4 Nonproblem: fdisk sees much more room than df?

